2. Полупроводниковые резисторы


Полупроводниковые резисторы – это резисторы, изготовленные на основе полупроводникового материала методами полупроводниковой технологии. Различают объемные и диффузионные полупроводниковые резисторы.

Объемные резисторы получают путем создания омических (невыпрямляющих) контактов металла с полупроводником. При идеальных контактах удельное сопротивление  такого резистора определяется объемными свойствами полупроводника.

Поскольку на практике используют легированные полупроводники, их удельное сопротивление в случае полной ионизации примеси:


=[qNд+]-1 при Nд>> Na


р=[qрNа-]-1 при Nа>> Nд


Несмотря на простоту конструктивного и технологического исполнения, объемные резисторы не нашли широкого применения из-за большой занимаемой площади и температурной нестабильности.

Диффузионные резисторы формируют на основе диффузионных слоев, толщина которых намного меньше их ширины и длинны. Диффузионные резисторы изолированы от остального объема полупроводника p-n -переходом. Они могут быть изготовлены одновременно с другими элементами при формировании структуры полупроводниковых ИМС. Поэтому для реализации диффузионных резисторов в полупроводниковых ИМС используют те же диффузионные слои, которые образуют основные структурные области транзистора: базовую, эмиттерную, или коллекторную.

Сопротивление диффузионного резистора R определяется удельным сопротивлением полупроводникового слоя, его глубиной и занимаемой площадью:


( 1 )


где s -удельное поверхностное сопротивление слоя

Диффузионные резисторы могут быть реализованы на основе любой из структурных областей транзистора. Для их использования в ИМС на поверхности структурных областей создают омические контакты.

Структура диффузионного резистора на основе структурных областей планарно-эпитаксиального транзистора на рис. 2.


Наиболее распространенны резисторы, сформированные на основе базовых слоев. При этом достигается сочетание высокого сопротивления слоя необходимого для уменьшения площади, занимаемой резистором и приемлемого температурного коэффициента.

Рис. 2

Для получения диффузионных резисторов

требуемого сопротивления, определяемого по формуле (1), диффузионные слои формируют в виде прямоугольника или змейки. В этом случае отношение l/b стремятся сделать по возможности большим. Для диффузионных резисторов характерно наличие паразитных элементов - распределенного конденсатора и распределенного транзистора.

Кроме диффузионных резисторов в полупроводниковых ИМС применяют резисторы на основе МДП-структуры. При этом в качестве резистора используют МДП-транзистор, работающий в режимах, наклонной области ВАХ. Использование МДП-структур в качестве резисторов позволяет реализовать целый ряд цифровых ИМС только на одних МДП-транзисторах.

3. Элемент КМОП - логики.


В цифровых ИМС практическое применение получили полевые транзисторы с оксидным диэлектриком, образующие контакт металл–оксид–полупроводник (КМОП). На рисунке 2 приведена принципиальная схема элемента ИЛИ–НЕ на два входа, содержащая один нагрузочный (VT3) и два логических (VT1 и VT2) транзистора.

U и.п.


VT3


F (Выход)

VT1

B (Вход 2)


А (Вход 1) VT2 А 1

В F=A+B



Рис. 3


Таблица 11

А В F
0 0 1
1 0 0
0 1 0
1 1 0

На рисунке 3 приведена схема логического элемента ИЛИ-НЕ. Она состоит из двух логических VT1, VT2 и одного нагрузочного VT3 транзисторов. Принцип работы (таб.1) заключается в следующем:

При подаче на оба логических транзистора (входы А и В) логического 0 они остаются закрытыми (IИС=0). Сопротивление перехода для Iи.п. велико, поэтому ток источника питания протекает через VT3 на выход схемы (контакт F) формируя уровень логической 1. При подаче хотя бы на один из входов логической 1 транзистор открывается, сопротивление перехода падает Iи.п. протекает на корпус тем самым на выходе схемы формируется уровень логического 0.

Элементы КМОП-логики нашли широкое применение в микросхемотехнике. На базе этих элементов строятся дешифраторы, триггеры, счетчики, регистры, сумматоры, умножители, элементы ПЗУ и т. д и т.п.



Информация о работе «Электронные и микроэлектронные приборы»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 43159
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
50268
3
3

... ). Перспективы развития микроэлектроники Функциональная микроэлектроника. Оптоэлектроника, акустоэлектроника, магнетоэлектроника, биоэлектроника и др. Содержание лекций 1 Цели и задачи курса “Электронные, квантовые приборы и микроэлектроника”. Физика полупроводников. p-n- переходы. Полупроводниковые диоды. Разновидности и характеристики. 2 Транзисторы. Принцип действия, разновидности и ...

Скачать
19786
3
6

... 8729;°C) Коэффициент теплового расширения, 10-6/°C Si 7,0 850 1,9 1,57 2,33 Сталь (высшей прочности) 4,2 1500 2,1 0,97 12 Нержавеющая сталь 2,1 660 2,0 0,329 17.3 Al 0,17 130 0,7 2,36 25 Микроэлектронная технология изготовления кремниевых приборов основана на применении тонких слоев, создаваемых ионной имплантацией или термической диффузией атомов легирующей примеси, что ...

Скачать
24752
0
0

... также чрезвычайно интересные особенности протекания тока через гетеропереход, например, диагональные туннельно-рекомбинационные переходы непосредственно между дырками из узкозонной и электронами из широкозонной составляющих гетероперехода.   Основные преимущества гетероструктур были реализованы – в низкопороговых лазерах на двойных гетероструктурах, работающих при комнатной температуре; – в ...

Скачать
23736
1
0

... помех со стороны радиоэлектронных средств, входящих в эту РТС и в окружающие ее РТС.  Современные тенденции в развитии приборов и аппаратов для научных и клинических исследований базируются как на фундаментальных знаниях биологической и медицинской науки, так и на широком использовании достижений физики, химии, информационной техники, микроэлектронной технологии, новых материалов. Научные ...

0 комментариев


Наверх