Содержание

 

1. ВВЕДЕНИЕ ……………………………..…………………………………….2

2. n-МОП СБИС ТЕХНОЛОГИЯ…………………………………………… .4

2.1Основы технологии производства n-МОПСБИС……………………4

 2.2Этапы технологического процесса….………………………………. 5

3. СБИС ПРОГРАММИРУЕМОЙ ЛОГИКИ (ПЛ.)……………………… .7

4. МИКРОПРОЦЕССОРЫ……………………………………………………12

5. МАТРИЧНЫЕ МИКРОПРОЦЕССОРЫ ………...……………………. .17

5.1 Матричные микропроцессоры………………………..……………...17

5.2 Транзисторные матрицы………………………………..…………….17

5.3 Матричные процессоры…………………………………..…………..20

5.4 Автоматизация проектирования

цифровых СБИС на базе матриц Вайнбергера и транзисторных

матриц………………………………………………………………….…..21

6. АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ СБИС ………….26

6.1 Основные типы БМК………………………..…………………….….28

6.2 Реализация логических элементов на БМК…..………………….….30

6.3 Системы автоматизированного проектирования матричных бис, постановка задачи проектирования……………………………………...31

6.4 Основные этапы проектирования…………………..………………..33

7. ЗАКЛЮЧЕНИЕ…………………………………………………………... ...35

8. СПИСОК ИСПЛЬЗУЕМОЙ ЛИТЕРАТУРЫ……………………………37

1. ВВЕДЕНИЕ

С момента появления первых полупроводниковых микросхем (начало 60-х годов) микроэлектроника прошла путь от простейших логических элементов до сложных цифровых устройств, изготавливаемых на одном полупроводниковом монокристалле площадью около 1 см2. Для обозначения микросхем со степенью интеграции выше 104 элементов на кристалле в конце 70-х годов появился термин "сверхбольшие интегральные схемы" (СБИС). Уже через несколько лет развитие этих микросхем стало генеральным направлением в микроэлектронике.

В начале своего развития электронная промышленность представляла собой отрасль техники, целиком основанную на операциях сборки, и позволяла реализовать весьма сложные функции путем объединения множества элементов в одном изделии. При этом значительная часть прироста стоимости изделий была связана с процессом сборки. Основными этапами этого процесса являлись этапы проектирования, выполнения и проверки соединений между электронными компонентами. Функции и размеры устройств, которые могли быть реализованы на практике, ограничивались количеством используемые компонентов, их физическими размерами и надежностью.

Исторически сложилось так, что первоначально внимание к ИС привлекли такие их особенности, как малые размеры и масса, а затем развитие техники ИС, позволяющей скомпоновать на поверхности кристалла значительное количество элементов, включая меж соединения, постепенно привело к возможности создания СБИС. Т.о. стало возможным не только "повышение экономичности" электронных схем, но и улучшение их характеристик с одновременным повышением надежности. Развитие техники и технологии СБИС обусловило весьма существенные вменения в специфике электронной промышленности, заключающееся в совершенствовании процесса изготовления ИС и методов их проектирования. Типичным фактором первой группы является совершенствование микро технологии. Уменьшение размеров полупроводниковых приборов позволяет одновременно добиться как улучшения характеристик ИС, формально определяемых законом пропорциональности размеров, так и улучшения их экономических (материальных и энергетических) показателей, связанных с уменьшением площади кристалла.

Исторически первым полупроводниковым материалом, использованным на ранних стадиях разработки полупроводниковых приборов, был германий. Совершенствование германиевой технологии сделало возможным создание ряда приборов, включая германиевые точечные и сплавные транзисторы. Однако вскоре германий был заменен кремнием, обладающим таким важным свойством, как возможность получения в окислительной среде тонкого, прочного и влагонепроницаемого диэлектрического слоя аморфной двуокиси кремния (SiO2).

В 60-х годах наибольшее распространение получили ИС на основе биполярных транзисторов. Начиная с 1975 г. на рынке превалируют цифровые ИС на основе МОП-структур. Преимущества ИС на основе МОП-структур:

Миниатюризация.

Низкое потребление мощности.

Высокий процент выхода.

Высокое быстродействие.

Высокий уровень технологичности.

В технологии СБИС степень интеграции превышает 215 элементов на кристалл. Уровень миниатюризации, который был использован при производстве процессора Intel Pentium в 1993 году, составлял 0,8 мкм, сейчас используются транзисторы с длиной канала 0,18 мкм, а в перспективе - разработка устройств с длиной канала в 0,13 мкм, что в плотную приближается к пределу физических ограничений на работу такого рода транзисторов.

Технология создания и получения сверхбольших интегральных схем с минимальными размерами в глубокой субмикронной области (0,25- 0,5 мкм к 2000 году) и наноэлектроника (полупроводниковые приборы с размерами рабочих областей до 100 нм к 2010 году) включают следующие основных направления:

технологию сверхбольших кремниевых схем с минимальными размерами в глубокой субмикронной области;

технологию сверхскоростных гетеропереходных приборов и интегральных схем на основе арсенида галлия, германия на кремнии и других соединений;

технологию получения наноразмерных приборов, включая нанолитографию.

При реализации этих направлений предусматривается создание сверхчистых монокристаллических полупроводниковых материалов и технологических реагентов, включая газы и жидкости; обеспечение сверх чистых производственных условий (по классу 0,1 и выше) в зонах обработки и транспорта пластин; разработка технологических операций и создание комплекса оборудования на новых физических принципах, в том числе кластерного типа, с автоматизированным контролем процессов, обеспечивающим заданную прецизионность обработки и низкий уровень загрязнения, а также высокую производительность процессов и воспроизводимость результатов, качество и надежность электронных элементов.

Технология сверхбольших интегральных схем обеспечивает разработку и промышленное освоение выпуска широкой номенклатуры интегральных схем, составляющих элементную базу высокопроизводительных ЭВМ, специализированной и бытовой радиоэлектронной аппаратуры, средств связи и телекоммуникаций, в том числе космического базирования. При данной технологии возможные минимальные рабочие размеры составляют 0,1-0,5 мкм и менее (до 70 нм к 2010 году), достигаются высокая производительность за счет использования пластин большого диаметра (200 и более мм) и полной автоматизации процессов, значительный процент выхода годных электронных приборов и высокая окупаемость вкладываемых в производство средств.

Кремниевая технология является основой создания элементной базы радиоэлектроники, вычислительной техники и средств автоматизации и связи широкого применения. Технология гетеропереходных интегральных схем благодаря высокому быстродействию этих приборов ориентирована на специализированные сверхскоростные применения, включая космическую технику, элементную базу суперкомпьютеров, технику связи и телекоммуникаций, а также специальную аппаратуру оборонного назначения.

Нанотехнология станет промышленной приблизительно начиная с 2010 года, что откроет перспективу создания принципиально нового поколения приборов и интегральных схем на новых физических эффектах и приведет в дальнейшем к коренным преобразованиям во многих областях деятельности, в первую очередь - в науке, образовании, управлении производством, в том числе при создании микро роботов, персональных средств связи, глобальных телекоммуникаций, вычислительных устройств на нейросетевых принципах.


Информация о работе «Сверхбольшие интегральные схемы»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 84679
Количество таблиц: 0
Количество изображений: 11

Похожие работы

Скачать
10974
0
2

... время широкое распространение получили программируемые БИС с матричной структурой, среди которых особое место занимают программируемые логические матрицы (ПЛМ) - большие интегральные схемы, сочетающие регулярность структуры полупроводникового запоминающего устройства (ЗУ) с универсальностью микропроцессора. ПЛМ обладает существенными преимуществами перед микропроцессором при реализации сложных ...

Скачать
105300
1
21

... учитывать возможности по ранее забракованным участкам сети из-за загруженности или неисправности [12]. Алгоритм прост для разработки и хорошо работает в окружения, где трафик сети относительно предсказуем, а схема сети относительно проста. 5. Структурная схема маршрутизатора, реализующего логический метод формирования Рассмотрим процесс нахождения оптимального пути на магистральной сети ...

Скачать
36705
0
0

... и одна из его модификаций SIR-M/I, разработанная фирмой AMS (Alenia Marconi Systems). Модификация SIR-M/I отличается от SIR-M тем, что в ней предусмотрена возможность работы в режиме S. Структурная схема вторичного моноимпульсного радиолокатора SIR-M приведена на рис. 4. Антенна LVA типа ALE-9 устанавливается обычно над антеннами G-33 диапазона S или антеннами G-7 и G-14 диапазона L первичных ...

Скачать
65135
0
1

... оснащать их дополнительными устройствами сотен различных производителей. Итак, после начала широкого внедрения персональных компьютеров в повседневную жизнь, продолжилось быстрое развитие вычислительной техники. Остановимся на наиболее важном элементе: микропроцессор – это эффективный с технологической и экономической точки зрения инструмент для переработки возрастающих потоков информации. Новое ...

0 комментариев


Наверх