4.3 Расчет схемы защиты компенсационного стабилизатора от перегрузки.

 

Устройства защиты стабилизаторов напряжения от перегрузок можно разделить на встроенные, воздействующие на регулирующий элемент стабилизатора, и автономные, содержащие отдельный ключевой элемент. Обычно к стабилизаторам с защитой от короткого замыкания выходной цепи предъявляется требование автоматического возврата в рабочий режим после устранения перегрузки.

Разрабатываем схему защиты компенсационного стабилизатора напряжения от перегрузки (рис 4.1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Рис. 4.1

 

 

Схема защиты компенсационного стабилизатора от перегрузки реализована на элементах VT5 и R8.

 

 

 

Для расчета принимаем ток срабатывания защиты равный 110% от Iн .

 

Iн max = 1.1 Iн = 1.1 ´ 5 = 5.5 А.

 

Рассчитываем сопротивление R8 в соответствии с методикой изложенной в [3]:

 

R8 = Uбе5/ Iн max = 0.7 / 5.5 = 0.127 Ом.  (4.39)

 

 

Рассчитываем мощность проволочного резистора

 

РR8 = Uбе5´ Iн max = 0.7 ´ 5.5 = 3.85 Вт. (4.40)

 

 

Выбираем транзистор VT5 из условия Iк5 = Iб3 ;

 

Uк5 max =Uбэ3 + R8´Iн max = 0.7 + 0.127 ´ 5.5 =1.4 B; (4.41)

 

P5 = Uк5 max ´ Iб3 = 1.4 ´ 6.7´10-3= 9.38 ´10-3Вт. (4.42)

 

По полученным значениям Uк5max , Iк5, Р5 выбираем тип транзистора и выписываем его параметры:

 

 

Марка транзистора

КТ315А

Тип транзистора

NPN

Допустимый ток коллектора, Iк доп

100 мА

Доп. напряжение коллектор-эмиттер, Uк доп

20 В

Рассеиваемая мощность коллектора, Pпред

0.15 Вт

Минимальный коэф. передачи тока базы, h21Э5 min

20.

 

 

 

 

 

 

 

4.3    Разработка схемы компенсационного стабилизатора напряжения на базе ИМС.

 

Разработка схемы компенсационного стабилизатора напряжения на базе ИМС сводится к выбору стандартной серийно выпускаемой ИМС и расчета (если необходимо) навесных элементов. Таблица 4.1
Марка ИМС Максимальное выходное напряжение, В Максимальное входное напряжение, В Минимальное входное напряжение, В Максимальный выходной ток, А Максимальная рассеиваемая мощность, Вт Предельно допустимая температура, °С Нестабильность по току, %
К142ЕН1А 12 20 9 0.15 0.8 0.5
К142ЕН1Б 12 20 9 0.15 0.8 0.2
К142ЕН1В 12 20 9 0.15 0.8 2
К142ЕН2А 30 40 20 0.15 0.8 0.5
К142ЕН2Б 30 40 20 0.15 0.8 0.2
К142ЕН2Б 30 40 20 0.15 0.8 2
К403ЕН1А 5 2 10 1
К403ЕН1Б 5 2 10 5
К403ЕН2А 6 2 10 1
К403ЕН2Б 6 2 10 5
К403ЕН3А 9 2 10 1
К403ЕН3Б 9 2 10 5
К403ЕН4А 12 2 10 1
К403ЕН5А 15 1.5 8.5 1
К403ЕН5Б 15 1.5 8.5 5
К403ЕН7А 27 1 6 1
SD1083 12 40 7.5 50 170 0.7
SD1084 15 40 5 25 170 0.7
SD1085 20 40 3 15 170 0.7
LAS1520 20 40 1.5 6 150 0.6

 

В качестве интегрального стабилизатора напряжения выбираем ИМС серии SD 1084. Составляем схему стабилизатора (рис. 4.2).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Рис. 4.2

 

Выбираем навесные элементы в соответствии и с методикой изложенной в [4].

Рабочее напряжение стабилитрона VD1 определяем из соотношения

 

UVD1 = 0.9 Uвых  = 0.9 ´ 15 = 13.5 В. (4.43)

 

Выбираем тип стабилитрона и выписываем его основные параметры:

стабилитрон 2С515А;

I VD1 = 45´10-3 А – средний ток стабилизации;

r VD1 = 25 Ом – дифференциальное сопротивление стабилитрона.

Рассчитываем сопротивление резистора R1

 

R1 = 0.9Uвых / I VD1= 0.9´15 / 45´10-3 = 300 Ом. (4.44)

РR1 = 0.9Uвых´I VD1= 0.9´15´45´10-3 = 608´10-3 Вт. (4.45)

 

В соответствии с рядом Е24 выбираем резистор типа МТ-1,0 300 Ом ±5%.

Рассчитываем сопротивление делителя R2R3

R23 = UVD1 / ( 3´ Iп) = 13.5 / ( 3 ´ 5´10-3) = 900 Ом, (4.46)

 

где Iп – ток потерь микросхемы, А (5´10-3 А).

Рассчитываем сопротивление резисторов R2 и R3:

 

R2 = 2 ´ R23 / 3 = 2´ 900 / 3 = 600 Ом, (4.47)

R3 = R23 / 3 = 900 / 3 = 300 Ом, (4.48)

 

РR2 = (3´ Iп)2 ´ R2 = 600´225´10-6 = 135´10-3 Вт, (4.49)

РR3 = (3´ Iп)2 ´ R3 = 300´225´10-6 = 67.5´10-3 Вт. (4.50)

 

В соответствии с рядом Е24 выбираем резисторы типа МТ-0,25 600 Ом ±5% и СП5-16Т 300 Ом ±5% соответственно.

Конденсаторы С1 и С2 имеют емкости 100мкФ и 5мкФ соответственно. Более точный расчет емкости конденсаторов и их выбор производится в соответствии с данными про сопряженные со стабилизатором устройства.

 

 

 

 

 

 

 

 

 

 

 


Информация о работе «Расчет компенсационных стабилизаторов напряжения»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 23197
Количество таблиц: 8
Количество изображений: 6

Похожие работы

Скачать
10781
9
1

... Студенту гр. ____99-КТ-61______Дмитриеву А. А.______________________ По дисциплине _________________Электроника_______________________ Тема курсовой работы:_____Разработка компенсационного стабилизатора напряжения на базе операционного усилителя (ОУ). Разработка цифрового логического устройства.____________________________________________ Исходные данные __________Uвх_= 220 В (+10%, -15%), Кст = ...

Скачать
19862
3
13

... и в то же время позволяют получить стабильные параметры выходного напряжения, малочувствитель­ные к изменениям температуры, влажности и другим внешним воздействиям. Примером интегрального стабилизатора напряжения, по­лучившего широкое распространение в радиолюбительской прак­тике, является микросхема серии 142, имеющая множество разновидностей. ИМС этой серии позволяют получать фиксированное ...

Скачать
26000
0
9

... . Только после полного расчета режимов работы и выбора элементов можно составить окончательный вариант схемы электрической принципиальной компенсационного стабилизатора напряжения. 3. РАСЧЕТ СХЕМЫ ЭЛЕКТРИЧЕСКОЙ ПРИНЦИПИАЛЬНОЙ РАЗНОСТНОГО УСИЛИТЕЛЯ Рис.3.1 Схема вычитателя РАСЧЕТНАЯ ЧАСТЬ 3.1 Исходные данные Тип ОУ К140УД9 ; ; Rн = 15кОм; ; ; ; ; Расчет выходного ...

Скачать
7460
7
7

ЖЕНИЯ Стабилизация среднего значения выходного напряжения вторичного источника питания производится c помощью стабилизатора напряжения. Выбор стабилизатора напряжения осуществляется исходя из следующих соображений. Если не нужно регулировать напряжение на нагрузке (не заданы ΔUн+ и ΔUн-) и ток в нагрузке не превышает 0,1А, то можно выбрать, как самый простой, параметрический ...

0 комментариев


Наверх