1. Выберем напряжение эмиттера , ток делителя  и напряжение питания ;

2. Затем рассчитаем .

Напряжение эмиттера  выбирается равным порядка . Выберем .

Ток делителя  выбирается равным , где - базовый ток транзистора и вычисляется по формуле:

(мА); (4.1.1)

Тогда:

 (мА) (4.1.2)

Напряжение питания рассчитывается по формуле: (В)

Расчёт величин резисторов производится по следующим формулам:

 Ом; (4.1.3)

(4.1.4)

 (Ом); (4.1.5)

 (Ом); (4.1.6)

Данная методика расчёта не учитывает напрямую заданный диапазон температур окружающей среды, однако, в диапазоне температур от 0 до 50 градусов для рассчитанной подобным образом схемы, результирующий уход тока покоя транзистора, как правило, не превышает (10-15)%, то есть схема имеет вполне приемлемую стабилизацию.

4.2 Пассивная коллекторная термостабилизация

Рисунок 4.2 - Схема пассивной коллекторной термостабилизации.

Пусть U=10В

Rк= (Ом); (4.2.1)

Еп=Uкэо+U=10+10=20В (4.2.2)

Rб= =5,36 (кОм) (4.2.3)

Ток базы определяется Rб. При увеличении тока коллектора напряжение на Uкэо падает и следовательно уменьшается ток базы, а это не даёт увеличиваться дальше току коллектора. Но чтобы стал изменяться ток базы, напряжение Uкэо должно измениться на 10-20%, то есть Rк должно быть очень велико, что оправдывается только в маломощных каскадах.


4.3 Активная коллекторная термостабилизация

Рисунок 4.3 - Схема активной коллекторной термостабилизации

Сделаем так чтобы Rб зависело от напряжения Ut. Получим что при незначительном изменении тока коллектора значительно изменится ток базы. И вместо большого Rк можно поставить меньшее на котором бы падало небольшое (порядка 1В) напряжение.

Статический коэффициент передачи по току первого транзистора bо1=30. UR4=5В.

R4===85 (Ом) (4.3.1)

(4.3.2)

Iко1 = Iбо2  =

Pрас1 = Uкэо1*Iко1 = 5*1,68*10-3 = 8,4 мВт

R2===2,38 (кОм) (4.3.3)

R1===672 (Ом) (4.3.4)

R3 = (Ом) (4.3.5)

Еп = Uкэо2+UR4 = 10+5 = 15В (4.3.6)

Данная схема требует значительное количество дополнительных элементов, в том числе и активных. При повреждении емкости С1 каскад самовозбудится и будет не усиливать, а генерировать, т.е. данный вариант не желателен, поскольку параметры усилителя должны как можно меньше зависеть от изменения параметров его элементов. Наиболее приемлема эмиттерная термостабилизация.

5. Расчёт параметров схемы Джиаколетто

Рисунок 5.1 - Эквивалентная схема биполярного транзистора (схема

Джиаколетто)

Ск(треб)=Ск(пасп)*=4×=8,9 (пФ), где

Ск(треб)-ёмкость коллекторного перехода при заданном Uкэ0,

Ск(пасп)-справочное значение ёмкости коллектора при Uкэ(пасп).

rб= =33,5 (Ом); gб==0,03 (Cм), где (5.1)

rб-сопротивление базы,

-справочное значение постоянной цепи обратной связи.

rэ= ==0,835 (Ом), где (5.2)

Iк0 в мА,

rэ-сопротивление эмиттера.

gбэ===0,039, где (5.3)

gбэ-проводимость база-эмиттер,

-справочное значение статического коэффициента передачи тока в схеме с общим эмиттером.

Cэ===41 (пФ), где (5.4)

Cэ-ёмкость эмиттера,

 fт-справочное значение граничной частоты транзистора при которой =1

Ri= =1333 (Ом), где (5.5)

Ri-выходное сопротивление транзистора,

Uкэ0(доп), Iк0(доп)-соответственно паспортные значения допустимого напряжения на коллекторе и постоянной составляющей тока коллектора.

gi=0.75(мСм).

(5.6)

где К0 - коэффициент усиления резисторного каскада

(5.7)

где τв - постоянная времени верхних частот резисторного каскада

(5.8)

где τ - постоянная времени верхних частот

(5.9)

где S0 - крутизна проходной характеристики

(5.10)

где Свх - входная динамическая емкость каскада

(5.11)

(5.12)

(5.13)

где fв - верхняя граничная частота

Из формул 5.6 - 5.11 получим:

(Ом)

(См)

 - верхняя граничная частота при условии что на каждый каскад приходится по 0,75 дБ искажений.

Данное значение верхней граничной частоты не удовлетворяет требованиям технического задания, поэтому потребуется введение коррекции.


Информация о работе «ИМПУЛЬСНЫЙ УСИЛИТЕЛЬ»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 19583
Количество таблиц: 4
Количество изображений: 0

Похожие работы

Скачать
11748
2
6

... рабочей прямой. Рабочая прямая проходит через точки Uкэ=Eк и Iк=Eк÷Rн и пересекает графики выходных характеристик (токи базы). Для достижения наибольшей амплитуды при расчёте импульсного усилителя рабочая точка была выбрана ближе к наименьшему напряжению т.к у оконечного каскада импульс будет отрицательный. По графику выходных характеристик (рис.1) были найдены значения IКпост=4,5 мА, ...

Скачать
8360
3
5

... Расчет Сф, Rф, Ср 10. Заключение Литература ТЕХНИЧЕСКОЕ ЗАДАНИЕ № 2 на курсовое проектирование по дисциплине “Схемотехника АЭУ” студенту гр.180 Курманову Б.А. Тема проекта Импульсный усилитель Сопротивление генератора Rг = 75 Ом. Коэффициент усиления K = 25 дБ. Длительность импульса 0,5 мкс. Полярность "положительная". Скважность 2. Время установления 25 нс. Выброс ...

Скачать
6383
0
0

... что для согласования с нагрузочным сопротивлением необходимо после усилительного каскадов поставить эмиттерный повторитель, начертим схему усилителя:   2.2 Расчет статического режима усилителя Рассчитываем первый усилительный каскад. Выбираем рабочую точку для первого усилительного каскада. Ее характеристики: ...

Скачать
36538
2
4

... сопротивления источника входного сигнала, а поэтому изме­нение условия оптимальности при облучении не приводит к дополни­тельному увеличению шума. Радиационные эффекты в ИОУ. Воздействие ИИ на параметры ИОУ.   Интегральные операционные усилители (ИОУ) представляют собой высококачественные прецизионные усилители, которые относятся к классу универсальных и многофункциональных аналоговых ...

0 комментариев


Наверх