6. Анализ эквивалентных схем биполярного транзистора.

Все параметры можно разделить на собственные (или первичные) и вторичные. Собственные параметры характеризуют свойства самого транзистора независимо от схемы его включения, а вторичные параметры для различных схем включения различны.

Рис. 6-1. Эквивалентные Т-образные схемы транзистора с генератором ЭДС (а) и тока (б).

В качестве собственных параметров помимо знакомого нам коэффициента усиления по току принимают некоторые сопротивления в соответствии с эквивалентной схемой транзистора для переменного тока (рис. 6-1). Эта схема, называемая Т-образной, отображает электрическую структуру транзистора и учиты­вает его усилительные свойства. Как в этой, так и в других эквивалентных схемах следует подразумевать, что на вход включается источник усиливаемых колебаний, создающий входное напряжение с амплитудой , а на выход - нагрузка RH. Здесь и в дальнейшем для переменных токов и напряжений будут, как правило, указаны их амплитуды. Во многих случаях они могут быть заме­нены действующими, а иногда и мгновенными значениями.

Основными первичными параметрами являются сопротивления , и , г. е. сопротивления эмиттера, коллектора и базы для переменного тока. Со­противление , представляет собой сопротивление эмиттерного перехода, к кото­рому добавляется сопротивление эмиттерной области. Подобно этому явля­ется суммой сопротивлений коллекторного перехода и коллекторной области, но последнее очень мало по сравнению с сопротивлением перехода. А сопротивление есть поперечное сопротивление базы.

В схеме на рис. 6-1,а усиленное переменное напряжение на выходе получается от некоторого эквивалентного генератора, включенного в цепь кол­лектора; ЭДС этого генератора пропорциональна току эмиттера .

Эквивалентный генератор надо считать идеальным, а роль его внутреннего сопротивления выполняет сопротивление . Как известно. ЭДС любого генератора равна произведению его тока короткого замыкания на внутреннее сопротивление. В данном случае ток короткого замыкания равен , так как при , т. е. при коротком замыкании на выходе. Таким образом, ЭДС генератора равна .

Вместо генератора ЭДС можно ввести в схему генератор тока. Тогда получается наиболее часто применяемая эквивалентная схема (рис. 6-1, б). В ней генератор тока создает ток, равный . Значения первичных параметров примерно следующие. Сопротивление , составляет десятки Ом, — сотни Ом, а — сотни килоОм и даже единицы мегаОм. Обычно к трем сопротивлениям в качестве четвертого собственного параметра добавляют еще . Рассмотренная эквивалентная схема транзистора пригодна только для низких частот. На высоких частотах необходимо учитывать еще емкости эмиттерного и коллекторного переходов, что приводит к усложнению схемы.

Рис. 6-2. Эквивалентная Т-образная схема транзистора, включенного по схеме ОЭ

Эквивалентная схема с генератором тока для транзистора, включенного по схеме ОЭ. показана на рис. 6-2. В ней генератор дает ток , а со­противление коллекторного перехода по сравнению с предыдущей схемой зна­чительно уменьшилось и равно или, приближенно если учесть. что и . Уменьшение сопротивления коллекторного перехода в схеме ОЭ объясняется тем, что в этой схеме некоторая часть напряжения приложена к эмиттерному переходу и усиливает в нем инжекцию. Вслед­ствие этого значительное число инжектированных носителей приходит к коллек­торному, переходу и его сопротивление снижается.

Переход от эквивалентной схемы ОБ к схеме ОЭ можно показать сле­дующим образом. Напряжение, создаваемое любым генератором, равно разности между ЭДС и падением напряжения на внутреннем сопротивлении. Для схемы по рис. 6-1, а это будет

Заменим здесь на сумму . Тогда получим

В этом выражении первое слагаемое представляет собой ЭДС, а вто­рое слагаемое есть падение напряжения от тока на сопротивлении , которое является сопротивлением коллекторного перехода. А ток ко­роткого замыкания, создаваемый эквивалентным генератором тока, равен от­ношению ЭДС к внутреннему сопротивлению, т. е.

Рассмотренные Т-образные эквивалентные схемы являются приближенными, так как на самом деле эмиттер, база и коллектор соединены друг с другом внутри транзистора не в одной точке. Но тем не менее использование этих схем для решения теоретических и практических задач не дает значительных погрешностей.

29



7. Н – параметры биполярного транзистора.

В настоящее время основными считаются смешанные (или гибридные) пара­метры, обозначаемые буквой h или H. Название «смешанные» дано потому, что среди них имеются две относительные величины, одно сопротивление и одна проводимость. Именно h-параметры приводятся во всех справочниках. Параметры системы h удобно измерять. Это весьма важно, так как публи­куемые в справочниках параметры являются средними, полученными в результате измерений параметров нескольких транзисторов данного типа. Два из h-параметров определяются при коротком замыкании для переменного тока на выходе, т. е. при отсутствии нагрузки в выходной цепи. В этом случае на выход транзистора подается только постоянное напряжение (u2=const) от ис­точника Е2. Остальные два параметра определяются при разомкнутой для переменного тока входной цепи, т. е. когда во входной цепи имеется только постоянный ток (i1=const), создаваемый источником питания. Условия и2=const и i1=const нетрудно осуществить на практике при измерении h-параметров.

В систему h-параметров входят следующие величины.

Входное сопротивление

при u2=const (7.1)

представляет собой сопротивление транзистора между входными зажимами для переменного входного тока при коротком замыкании на выходе, т. е. при отсутствии выходного переменного напряжения.

При таком условии изменение входного тока является результатом изменения только входного напряжения . А если бы на выходе было пе­ременное напряжение, то оно за счет обратной связи, существующей в транзисторе, влияло бы на входной ток. В результате входное сопротивление получалось бы различным в зависимости от переменного напряжения на выходе, которое, в свою очередь, зависит от сопротивления нагрузки RH. Но параметр должен характеризовать сам транзистор (независимо от RH), и поэтому он определяется при u2 = const, т. е. при RH = 0.

Коэффициент обратной связи по напряжению

при (7.2)

показывает, какая доля выходного переменного напряжения передается на вход транзистора вследствие наличия в нем внутренней обратной связи.

Условие в данном случае подчеркивает, что во входной цепи нет переменного тока, т. е. эта цепь разомкнута для переменного тока, и, следо­вательно, изменение напряжения на входе , есть результат изменения только выходного напряжения .

Как уже указывалось, в транзисторе всегда есть внутренняя обратная связь за счет того, что электроды транзистора имеют электрическое соединение между собой, и за счет сопротивления базы. Эта обратная связь существует на любой низкой частоте, даже при f=0, т. е. на постоянном токе.

Коэффициент усиления по току (коэффициент передачи тока)

при u2 = const (7.3)

показывает усиление переменного тока транзистором в режиме работы без нагрузки.

Условие u2 = const, т. е. RH = 0, и здесь задается для того, чтобы изменение выходного тока зависело только от изменения входного тока . Именно при выполнении такого условия параметр будет действительно характеризовать усиление тока самим транзистором. Если бы выходное напряжение менялось, то оно влияло бы на выходной ток и по изменению этого тока уже нельзя было бы правильно оценить усиление.

Выходная проводимость

при (7.4)

представляет собой внутреннюю проводимость для переменного тока между вы­ходными зажимами транзистора.

Ток должен изменяться только под влиянием изменения выходного напряжения и2. Если при этом ток , не будет постоянным, то его изме­нения вызовут изменения тока и значение h22 будет определено неправильно.

Величина h22 измеряется в сименсах (См). Так как проводимость в практи­ческих расчетах применяется значительно реже, нежели сопротивление, то в даль­нейшем мы часто будем пользоваться вместо h22 выходным сопротивлением , выраженным в Омах или килоОмах.

31



Информация о работе «Анализ и моделирование биполярных транзисторов»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 82277
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
21943
0
0

... САПРа затраты машинного времени на определение нелинейных функций, описывающих различные полупроводниковые приборы составляют значительную часть общих затрат времени. 1.    Проблема математического моделирования биполярных транзисторов Под моделированием понимается описание электрических свойств полупроводникового устройства или группы таких устройств, связанных между собой, с помощью ...

Скачать
40899
6
39

... к модификации межэлектродных ёмкостей, а также режим работы транзистора – режимы большого или малого тока коллектора (проявление эффекта Кирка). Необходимо и достаточно параметры математической модели биполярных транзисторов описываются 8-ю характеристиками: Зависимостью напряжения на переходе эмиттер-база Uбэ в режиме насыщения от тока коллектора (желательно иметь диапазон изменения тока ...

Скачать
47493
1
33

... параметров модели транзистора, зависимости этих параметров от температуры и конструкции, рассмотрены методы экстракции параметров модели из экспериментальных характеристик. Анализ PSpice модели БТ показал, что наряду с достоинствами этой модели есть и существенные недостатки. В целом модель биполярного транзистора в PSpice может с высокой точностью и в широком диапазоне напряжений, токов и ...

Скачать
16842
23
4

... генератора тока базы в прямом (23) в инверсном (24) включениях; - проводимость GC – проводимость генератора тока коллектора в прямом и инверсных включениях (25) Шумовая модель биполярного транзистора При анализе частотных зависимостей передаточных характеристик в рамках анализа по переменному току линейных (усилительных) ИС может проводиться и анализ шумовых ...

0 комментариев


Наверх