2.3. Метод Булирша-Штера с использованием рациональной экстраполяции для системы уравнений

 

Метод Булирша-Штера (Bulirsch-Stoer Method) - это метод решения системы обыкновенных дифференциальных уравнений первого порядка с гладкими правыми частями. Гладкость правых частей является необходимой для работы метода. Если правые части вашей системы не являются гладкими или содержат разрывы, то лучше использовать метод Рунге-Кутта. В случае же гладкой системы метод Булирша-Штера позволяет добиться существенно большей точности, чем метод Рунге-Кутта.

 

Принцип работы метода

Основной идеей метода является вычисление состояния системы в точке x+h, как результата двух шагов длины h/2, четырех шагов длины h/4, восьми шагов длины h/8 и так далее с последующей экстраполяцией результатов. Метод строит рациональную интерполирующую функцию, которая в точке h/2 проходит через состояние системы после двух таких шагов, в точке h/4 проходит через состояние системы после четырех таких шагов, и т.д., а затем вычисляет значение этой функции в точке h = 0, проводя экстраполяцию.

Гладкость правых частей приводит к тому, что вычисленное при помощи экстраполяции состояние системы оказывается очень близко к действительному, а использование рациональной экстраполяции вместо полиномиальной позволяет ещё больше повысить точность.

Таким образом проводится один шаг метода, после чего принимается решение - следует ли изменять шаг, а если да - то в какую сторону. При этом используется оценка погрешности, которую мы получаем в качестве дополнительного результата при рациональной экстраполяции. Следует отметить, что алгоритм решает автономную систему, т.е. если уравнения системы содержат время, то необходимо ввести время в качестве переменной, производная от которой тождественно равна единице.

2.4            Метод Адамса

Явная схема Адамса.

Рассмотренные выше методы являются явными одношаговыми (для нахождения последующего приближения используется лишь одно предыдущее). Приведённый ниже метод является многошаговым.

Пусть задана задача Коши:

(2.4.1)

Для точного решения (которое нам не известно) выполнено:

(2.4.2)

Предположим, нам известны приближенные значения  функции u(x) в k точках  (стартовые k точек, в частности, можно найти методом Эйлера или методом Рунге-Кутта того или иного порядка), тогда функцию f(x,u(x)) в (2.4.2) для приближенного вычисления интеграла можно заменить на интерполяционный полином  порядка k-1, построенный по k точкам , интеграл от которого считается явно и представляет собой линейную комбинацию значений c некоторыми множителями . Таким образом, мы получаем следующую рекуррентную процедуру вычисления приближенных значений  функции u(x) (являющимся точным решением задачи Коши) в точках  :

(2.4.3)

Описанная схема является k-шаговой явной формулой Адамса.

Неявная схема Адамса.

Пусть - интерполяционный полином порядка k, построенный по k+1 значению б одно из которых, именно , мы будем считать неизвестным. Модифицируем (2.4.3), заменив в нём  на полином более высокой степени , интеграл от которого выражается в виде линейной комбинации значений  с некоторыми новыми коэффициентами :

(2.4.4)

Формула (2.4.4) представляет собой неявную схему Адамса и является уравнением на , которое можно решать методом последовательных приближений. Естественно, что начальное приближение , должно быть разумно выбрано. Для этого удобно объединить явную и неявную схемы Адамса в одну, называемую «методом коррекции». Именно с помощью явной схемы определяется начальное приближение (прогноз), а затем по неявной схеме оно необходимое число раз (обычно один или два) корректируется методом последовательных приближений до достижения заданной точности (коррекция).

2.5.Метод Эйлера.

Решить дифференциальное уравнение у/=f(x,y) численным методом - это значит для заданной последовательности аргументов х0, х1…, хn и числа у0, не определяя функцию у=F(x), найти такие значения у1, у2,…, уn, что уi=F(xi)(i=1,2,…, n) и F(x0)=y0. (2.5.1)

Таким образом, численные методы позволяют вместо нахождения функции

У=F(x) получить таблицу значений этой функции для заданной последовательности аргументов. Величина h=xk-xk-1 называется шагом интегрирования.

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.

Рассмотрим дифференциальное уравнение первого порядка (2.5.1)

с начальным условием

x=x0, y(x0)=y0  (2.5.2)

Требуется найти решение уравнения (2.5.1) на отрезке [а,b].

Разобьем отрезок [a, b] на n равных частей и получим последовательность х0, х1, х2,…, хn, где xi=x0+ih (i=0,1,…, n), а h=(b-a)/n-шаг интегрирования.

В методе Эйлера приближенные значения у(хi)»yi вычисляются последовательно по формулам уi+hf(xi, yi) (i=0,1,2…).

При этом искомая интегральная кривая у=у(х), проходящая через точку М00, у0), заменяется ломаной М0М1М2… с вершинами Мi(xi, yi) (i=0,1,2,…); каждое звено МiMi+1 этой ломаной, называемой ломаной Эйлера, имеет направление, совпадающее с направлением той интегральной кривой уравнения (2.5.1), которая проходит через точку Мi. Если правая часть уравнения (2.5.1) в некотором прямоугольнике R{|x-x0|£a, |y-y0|£b}удовлетворяет условиям:
|f(x, y1)- f(x, y2)| £ N|y1-y2| (N=const), (2.5.3)

|df/dx|=|df/dx+f(df/dy)| £ M (M=const),

то имеет место следующая оценка погрешности:

|y(xn)-yn| £ hM/2N[(1+hN)n-1], (2.5.4)

где у(хn)-значение точного решения уравнения (2.5.1) при х=хn, а уn- приближенное значение, полученное на n-ом шаге.

Формула (13) имеет в основном теоретическое применение. На практике иногда оказывается более удобным двойной просчет: сначала расчет ведется с шагом h, затем шаг дробят и повторный расчет ведется с шагом h/2. Погрешность более точного значения уn* оценивается формулой

|yn-y(xn)|»|yn*-yn|. (2.5.5)

 Метод Эйлера легко распространяется на системы дифференциальных уравнений и на дифференциальные уравнения высших порядков. Последние должны быть предварительно приведены к системе дифференциальных уравнений первого порядка.

Модифицированный метод Эйлера

Рассмотрим дифференциальное уравнение (2.5.1) y/=f(x,y) с начальным условием y(x0)=y0. Разобьем наш участок интегрирования на n равных частей. На малом участинтегральную кривую заменим прямой  линией.

 Рис.1 Метод Эйлера в графическом видa

 Получаем точку Мккк). Через Мк проводим касательную: у=ук=f(xk,yk)(x-xk). Делим отрезок (хкк1) пополам:

xNk/=xk+h/2=xk+1/2 (2.5.6)

yNk/=yk+f(xk,yk)h/2=yk+yk+1/2

Получаем точку Nk/. В этой точке строим следующую касательную:

y(xk+1/2)=f(xk+1/2, yk+1/2)=αk (2.5.7)

Из точки Мк проводим прямую с угловым коэффициентом αк и определяем точку пересечения этой прямой с прямой Хк1. Получаем точку Мк/. В качестве ук+1 принимаем ординату точки Мк/. Тогда:

ук+1ккh

xk+1=xk+h

(2.5.8) αk=f(xk+h/2, yk+f(xk,Yk)h/2)

yk=yk-1+f(xk-1,yk-1)h

(2.5.8)-рекурентные формулы метода Эйлера.

Сначала вычисляют вспомогательные значения искомой функции ук+1/2 в точках хк+1/2, затем находят значение правой части уравнения (11) в средней точке y/k+1/2=f(xk+1/2, yk+1/2) и определяют ук+1.

Для оценки погрешности в точке хк проводят вычисления ук с шагом h, затем с шагом 2h и берут 1/3 разницы этих значений:

| ук*-у(хк)|=1/3(yk*-yk), (2.5.9)

где у(х)-точное решение дифференциального уравнения.

 Таким образом, методом Эйлера можно решать уравнения любых порядков. Например, чтобы решить уравнение второго порядка y//=f(y/,y,x) c начальными условиями y/(x0)=y/0, y(x0)=y0, выполняется замена:

y/=z (2.5.10)

z/=f(x,y,z)

Тем самым преобразуются начальные условия: y(x0)=y0, z(x0)=z0, z0=y/0. (2.5.12)


3.Описание алгоритмов решения задачи

3.1.Описание переменных.

Наименование

Тип

Описание

Входные данные

Xi

double

Начальное значение (x) интервала вычисления

Xkon

double

Конечное значение (x) интервала вычисления

n

integer

Количество шагов

Yi

double

Начальное значение y

kx

double

Коэффициент при переменой x

ky

double

Коэффициент при переменной y

Выходные данные

h

double

Фиксированное приращение аргумента (x)

res

double

Расчётное значение уравнение y’=F(x,y) в точке (x)

Промежуточные

i

integer

Счётчик цикла

Yprom

double

Промежуточное значение y в точке Xprom

Xprom

double

Промежуточное значение x при h/2

a

double

Решение уравнения в точках f(Xprom,Yprom)

f1

double

Функция f(x,y)

Информация о работе «Решение дифференциальных уравнений 1 порядка методом Эйлера»
Раздел: Информатика, программирование
Количество знаков с пробелами: 24266
Количество таблиц: 4
Количество изображений: 0

Похожие работы

Скачать
21527
0
12

... ; D(x,y) – функция,возвращающая значение в виде вектора n элементов, содержащих первые производные неизвестных функций. 2.1 Метод Эйлера Если задачу об отыскании всех решений дифференциального уравнения удается свести к конечному числу алгебраических операций, операций интегрирования и дифференцирования известных функций, то говорят, что уравнение интегрируется в квадратурах. В приложениях ...

Скачать
22411
1
13

... шаг интегрирования ; tp – время интегрирования трех точечным методом прогноза и коррекции , ta – время интегрирования по методу Адамса-Башфорта , NU – массив начальных условий . Данная процедура способна производить решения систем линейных дифференциальных уравнений произвольного размера , на произвольном промежутке времени интегрирования . Вычисленные данные записываются в файлы prandcom*.df . ...

Скачать
18819
2
0

... значениями и корнями дифференциального уравнения Y(I), квадрат разности, а также производит их суммирование. Далее находится величина погрешности аппроксимации и все данные выводятся на экран. Общая программа решения дифференциального уравнения с последующей аппроксимацией результатов представлена на рис. 7 вместе с программой решения дифференциального уравнения, так как из нее получают значения ...

Скачать
23511
3
14

... , является важнейшей вспомогательной научно-технической задачей . Целью данной курсовой работы является разработка алгоритма решения систем линейных дифференциальных уравнений первого порядка пяти точечным методом прогноза и коррекции Адамса-Башфорта . 1. ПОСТАНОВКА ЗАДАЧИ   Рассмотрим произвольную систему линейных дифференциальных уравнений первого порядка : ...

0 комментариев


Наверх