1.2 ИСПОЛЬЗУЕМЫЕ УРОВНИ МОДЕЛИ OSI


Перемещение информации между компьютерами различных схем является чрезвычайно сложной задачей. В начале 1980 гг. Международная Организация по Стандартизации (ISO) признала необходимость в создания модели сети, которая могла бы помочь поставщикам создавать реализации взаимодействующих сетей. Эту потребность удовлетворяет эталонная модель "Взаимодействие Открытых Систем" (OSI), выпущенная в 1984 г.

Эталонная модель OSI быстро стала основной архитектурной моделью для передачи межкомпьютерных сообщений. Несмотря на то, что были разработаны другие архитектурные модели (в основном патентованные), большинство поставщиков сетей, когда им необходимо предоставить обучающую информацию пользователям поставляемых ими изделий, ссылаются на них как на изделия для сети, соответствующей эталонной модели OSI. И действительно, эта модель является самым лучшим средством, имеющемся в распоряжении тех, кто надеется изучить технологию сетей.

Эталонная модель OSI делит проблему перемещения информации между компьютерами через среду сети на семь менее крупных, и следовательно, более легко разрешимых проблем. Каждая из этих семи проблем выбрана потому, что она относительно автономна, и следовательно, ее легче решить без чрезмерной опоры на внешнюю информацию.

Каждая из семи областей проблемы решалась с помощью одного из уровней модели. Большинство устройств сети реализует все семь уровней. Однако в режиме потока информации некоторые реализации сети пропускают один или более уровней. Два самых низших уровня OSI реализуются аппаратным и программным обеспечением; остальные пять высших уровней, как правило, реализуются программным обеспечением.

Справочная модель OSI описывает, каким образом информация проделывает путь через среду сети (например, провода) от одной прикладной программы (например, программы обработки крупноформатных таблиц) до другой прикладной программы, находящейся в другом компьютере. Т.к.информация, которая должна быть отослана, проходит вниз через уровни системы, по мере этого продвижения она становится все меньше похожей на человеческий язык и все больше похожей на ту информацию, которую понимают компьютеры, а именно "единицы" и "нули".

Эталонная модель OSI не является реализацией сети. Она только определяет функции каждого уровня. В этом отношении она напоминает план для постройки корабля. Точно также, как для выполнения фактической работы по плану могут быть заключены контракты с любым количеством кораблестроительных компаний, любое число поставщиков сети могут построить протокол реализации по спецификации протокола. И если этот план не будет предельно понятным, корабли, построенные различными компаниями, пользующимися одним и тем же планом, пусть незначительно, но будут отличаться друг от друга. Примером самого незначительного отличия могут быть гвозди, забитые в разных местах.

Чем объясняется разница в реализациях одного и того же плана корабля (или спецификации протокола)? Частично эта разница вызвана неспособностью любой спецификации учесть все возможные детали реализации. Кроме того, разные люди, реализующие один и тот же проект, всегда интерпретируют его немного по-разному. И наконец, неизбежные ошибки реализации приводят к тому, что изделия разных реализаций отличаются исполнением. Этим объясняется то, что реализация протокола Х одной компании не всегда взаимодействует с реализацией этого протокола, осуществленной другой компанией.

Уровни OSI:

Прикладной уровень

Прикладной уровень - это самый близкий к пользователю уровень OSI. Он отличается от других уровней тем, что не обеспечивает услуг ни одному из других уровней OSI; однако он обеспечивает ими прикладные процессы, лежащие за пределами масштаба модели OSI. Примерами таких прикладных процессов могут служить программы обработки крупномасштабных таблиц, программы обработки слов, программы банковских терминалов и т.д.

Прикладной уровень идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные программы, а также устанавливает соглашение по процедурам устранения ошибок и управления целостностью информации. Прикладной уровень также определяет, имеется ли в наличии достаточно ресурсов для предполагаемой связи.

Представительный уровень

Представительный уровень отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации.

Представительный уровень занят не только форматом и представлением фактических данных пользователя, но также структурами данных, которые используют программы. Поэтому кроме трансформации формата фактических данных (если она необходима), представительный уровень согласует синтаксис передачи данных для прикладного уровня.

Сеансовый уровень

Как указывает его название, сеансовый уровень устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более об'ектами представления (как вы помните, сеансовый уровень обеспечивает своими услугами представительный уровень). Сеансовый уровень синхронизирует диалог между об'ектами представительного уровня и управляет обменом информации между ними. В дополнение к основной регуляции диалогов (сеансов) сеансовый уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительного и прикладного уровней.

Транспортный уровень

Граница между сеансовым и транспортным уровнями может быть представлена как граница между протоколами прикладного уровня и протоколами низших уровней. В то время как прикладной, представительный и сеансовый уровни заняты прикладными вопросами, четыре низших уровня решают проблемы транспортировки данных.

Транспортный уровень пытается обеспечить услуги по транспортировке данных, которые избавляют высшие слои от необходимости вникать в ее детали. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через об'единенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы).

Сетевой уровень

Сетевой уровень - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" - это по сути независимый сетевой кабель (иногда называемый сегментом).

Т.к. две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

Канальный уровень

Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

Физический уровень

Физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.


2 СПЕЦИАЛЬНАЯ ЧАСТЬ

2.1 ПРОТОКОЛЫ МАРШРУТИЗАЦИИ И ИХ МЕТРИКИ

2.1.1 Дистанционно-векторный протокол RIP


Протокол RIP (Routing Information Protocol) представляет собой один из старейших протоколов обмена маршрутной информацией, однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell.

В этом протоколе все сети имеют номера (способ образования номера зависит от используемого в сети протокола сетевого уровня), а все маршрутизаторы - идентификаторы. Протокол RIP широко использует понятие "вектор расстояний". Вектор расстояний представляет собой набор пар чисел, являющихся номерами сетей и расстояниями до них в хопах.

Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор отмечает этот факт тем, что присваивает элементу вектора, соответствующему расстоянию до этой сети, максимально возможное значение, которое имеет специальный смысл - "связи нет". Таким значением в протоколе RIP является число 16.

На рисунке ниже приведен пример сети, состоящей из шести маршрутизаторов, имеющих идентификаторы от 1 до 6, и из шести сетей от A до F, образованных прямыми связями типа "точка-точка".

Рис. Обмен маршрутной информацией по протоколу RIP


На рисунке приведена начальная информация, содержащаяся в топологической базе маршрутизатора 2, а также информация в этой же базе после двух итераций обмена маршрутными пакетами протокола RIP. После определенного числа итераций маршрутизатор 2 будет знать о расстояниях до всех сетей интерсети, причем у него может быть несколько альтернативных вариантов отправки пакета к сети назначения. Пусть в нашем примере сетью назначения является сеть D.

При необходимости отправить пакет в сеть D маршрутизатор просматривает свою базу данных маршрутов и выбирает порт, имеющий наименьшее расстояния до сети назначения (в данном случае порт, связывающий его с маршрутизатором 3).

Для адаптации к изменению состояния связей и оборудования с каждой записью таблицы маршрутизации связан таймер. Если за время тайм-аута не придет новое сообщение, подтверждающее этот маршрут, то он удаляется из маршрутной таблицы.

При использовании протокола RIP работает эвристический алгоритм динамического программирования Беллмана-Форда, и решение, найденное с его помощью является не оптимальным, а близким к оптимальному. Преимуществом протокола RIP является его вычислительная простота, а недостатками - увеличение трафика при периодической рассылке широковещательных пакетов и неоптимальность найденного маршрута.

На рисунке ниже показан случай неустойчивой работы сети по протоколу RIP при изменении конфигурации - отказе линии связи маршрутизатора M1 с сетью 1. При работоспособном состоянии этой связи в таблице маршрутов каждого маршрутизатора есть запись о сети с номером 1 и соответствующим расстоянием до нее.

Рис. Пример неустойчивой работы сети при использовании протокола RIP


При обрыве связи с сетью 1 маршрутизатор М1 отмечает, что расстояние до этой сети приняло значение 16. Однако получив через некоторое время от маршрутизатора М2 маршрутное сообщение о том, что от него до сети 1 расстояние составляет 2 хопа, маршрутизатор М1 наращивает это расстояние на 1 и отмечает, что сеть 1 достижима через маршрутизатор 2. В результате пакет, предназначенный для сети 1, будет циркулировать между маршрутизаторами М1 и М2 до тех пор, пока не истечет время хранения записи о сети 1 в маршрутизаторе 2, и он не передаст эту информацию маршрутизатору М1.

Для исключения подобных ситуаций маршрутная информация об известной маршрутизатору сети не передается тому маршрутизатору, от которого она пришла.

Существуют и другие, более сложные случаи нестабильного поведения сетей, использующих протокол RIP, при изменениях в состоянии связей или маршрутизаторов сети.



Информация о работе «Работа маршрутизаторов в компьютерной сети»
Раздел: Информатика, программирование
Количество знаков с пробелами: 48833
Количество таблиц: 4
Количество изображений: 0

Похожие работы

Скачать
48901
27
0

... MAC-адреса по IP-адресу Случай 1 Хост А с IP-адресом 195.40.0.4, подключенный к коммутатору S1, обращается к хосту B с IP-адресом 195.40.0.6, подключенному к коммутатору S2, расположенному в той же сети 195.40.0.0. Широковещательная передача ARP-запроса хостом A (6 байт) (6 байт) (2 байта) (2 байта) (6 байт) (4 байта) (6 байт) (4 байта) Адрес назначения (Destination) ...

Скачать
52261
7
26

... среднее время безотказной работы в часах. Для вычислительных сетей среднее время безотказной работы должно быть достаточ­но большим и составлять, как минимум, несколько тысяч часов. 2.4.3.2. Протоколы компьютерной сети – набор правил, определяющий взаимодействие двух одноименных уровней модели взаимодействия открытых систем в различных абонентских ЭВМ. Протокол – это не программа. Правила и ...

Скачать
82770
1
6

... ), которые предостав­ляют ценную информацию о статусе ЛВС. В частности, сетевые адаптеры используют эту информации для поддержания работоспособности ЛВС, а прикладные программы, предназначенные для управления компьютерной сетью, могут использовать эту информацию для определения статуса и состояния сети. Некоторые производители предлагают программные средства перехвата кадров MAC для управления ...

Скачать
30838
0
0

... в жизни всего общества. Современная компьютерная сеть имеет также очень много социальных и культурных разделов. Она является удобной информационной глобальной средой общения. С развитием популярности Компьютерной сети проявились и негативные аспекты его применения. К примеру, некоторые люди настолько увлекаются виртуальным пространством, что начинают предпочитать Интернет в реальности, проводя ...

0 комментариев


Наверх