2. Оптические компьютеры

Развитие вычислительной техники представляет собой постоянно сменяющие друг друга физические способы реализации логических алгоритмов - от механических устройств (вычислительная машина Бэббиджа) к ламповым (компьютеры 40-50-х годов Марк I и Марк II), затем к транзисторным и, наконец, к интегральным схемам. И уже на рубеже XXI века идут разговоры о скором достижении пределов применения полупроводниковых технологий и появлении вычислительных устройств, работающих на совершенно ином принципе. Все это свидетельствует о том, что прогресс не стоит на месте, и с течением времени ученые открывают новые возможности создания вычислительных систем, принципиально отличающихся от широко применяемых компьютеров. Существует несколько возможных альтернатив замены современных компьютеров, одна из которых - создание так называемых оптических компьютеров, носителем информации в которых будет световой поток.

Проникновение оптических методов в вычислительную технику ведется по трем основным направлениям. Первое основано на использовании аналоговых интерференционных оптических вычислений для решения отдельных специальных задач, связанных с необходимостью быстрого выполнения интегральных преобразований. Второе направление связано с  использованием оптических соединений для передачи сигналов на различных ступенях  иерархии  элементов вычислительной техники, т.е. создание чисто оптических или гибридных (оптоэлектронных) соединений вместо обычных, менее надежных, электрических соединений. При этом в конструкции компьютера  появляются  новые элементы - оптоэлектронные преобразователи  электрических  сигналов в оптические  и  обратно. Но самым перспективным направлением развития оптических вычислительных устройств является создание компьютера, полностью состоящего из оптических устройств обработки информации. Это направление интенсивно развивают с начала 80-х годов  ведущие научные центры (MTI, Sandia Laboratories и др.)  и основные компании-производители компьютерного оборудования (Intel, IBM).

В основе работы различных компонентов оптического компьютера (трансфазаторы-оптические транзисторы, триггеры, ячейки памяти, носители информации) лежит явление оптической бистабильности. Оптическая бистабильность - это одно из проявлений взаимодействия света с веществом в нелинейных системах с обратной связью, при котором определенной интенсивности и поляризации падающего на вещество излучения соответствуют два (аналог 0 и 1 в полупроводниковых системах) возможных стационарных состояния световой волны, прошедшей через вещество, отличающихся амплитудой и (или) параметрами поляризации. Причем предыдущее состояние вещества однозначно определяет, какое из двух состояний световой волны реализуется на выходе. Для большего понимания явление оптической бистабильности можно сравнить с обычной петлей магнитного гистерезиса (эффект, используемый в магнитных носителях информации). Увеличение интенсивности падающего на вещество светового луча до некоторого значения I1 приводит к резкому возрастанию интенсивности прошедшего луча; на обратном же ходе при уменьшении интенсивности падающего луча до некоторого значения I2<I1 интенсивность прошедшего луча остается постоянной, а затем резко падает. Таким образом, интенсивности  падающего  пучка I, значение которой находится в пределах  петли гистерезиса, соответствуют два значения интенсивности прошедшего пучка, зависящих от предыдущего оптического состояния поглощающего вещества.

Весь набор полностью оптических логических устройств для синтеза более сложных блоков оптических компьютеров реализуется на основе пассивных нелинейных резонаторов-интерферометров. В зависимости от начальных условий (начального положения пика пропускания и начальной интенсивности оптического излучения) в пассивном нелинейном резонаторе, нелинейный процесс завершается установлением одного из двух устойчивых состояний пропускания падающего излучения. А из нескольких нелинейных резонаторов можно собрать любой, более сложный логический элемент (триггер).

Элементы памяти оптического компьютера представляют собой полупроводниковые нелинейные оптические интерферометры, в основном, созданными из арсенида галлия (GaAs). Минимальный размер оптического элемента памяти определяется минимально необходимым числом атомов, для которого устойчиво наблюдается оптическая бистабильность. Это число составляет ~1000 атомов, что соответствует 1-10 нанометрам.

К настоящему времени уже созданы и оптимизированы отдельные составляющие оптических  компьютеров – оптические процессоры, ячейки памяти), однако до полной сборки еще далеко. Основной проблемой, стоящей  перед учеными, является синхронизация работы отдельных элементов оптического компьютера в единой системе, поскольку уже существующие элементы характеризуются различными параметрами рабочей волны светового излучения (интенсивность, длина волны), и уменьшение его размера. Если для конструирования оптического компьютера использовать уже разработанные компоненты, то обычный PC имел бы размеры легкового автомобиля. Однако применение оптического излучения в качестве носителя информации имеет ряд потенциальных преимуществ по сравнению с электрическими сигналами, а именно:

1.   световые потоки, в отличие от электрических, могут пересекаться друг с другом;

2.   световые потоки могут быть локализованы в поперечном направлении до нанометровых размеров и передаваться по свободному пространству;

3.   скорость распространения светового сигнала выше скорости электрического;

4.   взаимодействие световых потоков с нелинейными средами распределено по всей среде,  что дает новые степени свободы  (по сравнению с электронными системами) в организации связи и создании параллельных архитектур.

Вообще, создание большего количества параллельных архитектур, по сравнению с полупроводниковыми компьютерами, является основным достоинством оптических компьютеров, оно позволяет преодолеть ограничения по быстродействию и параллельной обработке информации, свойственные современным ЭВМ. Развитие оптических технологий все равно будет продолжаться, поскольку полученные результаты важны не только для создания оптических компьютеров, но также и для оптических коммуникаций и сети Internet.


Информация о работе «Перспективы развития компьютерной техники»
Раздел: Информатика, программирование
Количество знаков с пробелами: 23843
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
21439
0
2

... для оптических коммуникаций и сети Internet. Глава II. Квантовый компьютер Создание качественно новых вычислительных систем с более высокой производительностью и некоторыми характеристиками искусственного интеллекта, например с возможностью самообучения,- очень актуальная тема. Последние десять лет такие разработки ведутся во многих направлениях - наиболее успешными и быстро развивающимися из ...

Скачать
30838
0
0

... в жизни всего общества. Современная компьютерная сеть имеет также очень много социальных и культурных разделов. Она является удобной информационной глобальной средой общения. С развитием популярности Компьютерной сети проявились и негативные аспекты его применения. К примеру, некоторые люди настолько увлекаются виртуальным пространством, что начинают предпочитать Интернет в реальности, проводя ...

Скачать
100693
4
0

... сферы интеллектуальной деятельности, принесло с собой совершенно новые представления о возможностях обработки информации, новые приемы и формы работы, новый уровень информационной обеспеченности общества. В этом смысле есть все основания говорить о наступлении эры компьютерных технологий как о новом витке цивилизации. Кстати, выражение "компьютерная цивилизация" действительно есть, оно реально ...

Скачать
26537
0
0

... -масс-спектрометры и пр.[38] Таким образом, на основе краткого анализа технических средств обнаружения, фиксации, изъятия и исследования наркотиков, обозначены тенденции и перспективы их развития, предложены варианты применения современных инструментальных средств анализа в передвижных криминалистических лабораториях. [1] Волынский В.А. “Закономерности и тенденции развития криминалистической ...

0 комментариев


Наверх