35. Равномерная непрерывность. Ее характеризация в терминах колебаний.

Определение: Е>0  >0: х’,х”: |х’-х”| |f(x’)-f(x”)| функция называется равномерно непрерывной

Отличие от непрерывности состоит в том, что там  зависит от Е и от х”, то здесь  не зависит от х”.

Определение: Ф-ция f - не равномерно непрерывна, если Е>0  >0: х’,х”: |х’-х”| |f(x’)-f(x”)|Е>0

Рассмотрим множество {|f(x’)-f(x”)|:|x’-x”|0 >0: Wf()Е Lim Wf()=0 0


36.Теорема Кантора о равномерной непрерывности непрерывной функции на отрезке.

Теорема: Если f непрерывна на [a,b], то она равномерно непрерывна на [a,b].

Доказательство(от противного):

Пусть f не равномерно непрерывна на [a,b]=>Е>0 >0 х’,х”: |х’-х”||f(x’)-f(x”)|Е. Возьмем  =1/к, кN хK, х’K[a,b]: |хK-х’K| из нее по теореме Больцано-Вейерштрасса можно выделить подпосл-ть xKs сходящуюся к х0. Получаем: |хKs-х’Ks|(f(x0+х)-f(x0))/х=f’(x0)+(x), (x)0 при xx0. f(x0+х)-f(x0)=f`(x0)*х+(x)*х учитывая, что x0+х=x и обозначая (x)*х через o(x-x0) получим f(x)=f’(x0)*(x-x0)+f(x0)+o(x-x0). Необхо димо заметить, что o(x-x0) уменьшается быстрее чем (x-x0) при xx0 (т.к. o(x-x0)/(x-x0)0 при xx0)

Определение: Ф-ция f называется дифференцируемой в точке x0 если сR: в некоторой окрестности точки x0 f(x)=С(x-x0)+f(x0)+o(x-x0)

Теорема: Функция диффференцируема в точке x0  f’(x0)

Доказательство:

f`(x0)=C

=>: f(x)=C(x-x0)+f(x0)+o(x-x0) => (f(x)-f(x0))/(x-x0)=C+o(x-x0)/(x-x0)=C+(x), (x)0 при xx0.

Переходим к пределу при xx0 => Lim (f(x)-f(x0))/(x-x0)=C+0=C => Слева записано производное значение ф-ции f => по определению C=f`(x0)

Определение: Если функция хf(x) дифференцируема в точке x0, то линейная функция хf’(x0)*х называется дифференциалом функции f в точке x0 и

обозначается df(x0). (диф-ал ф-ции хх обозначают dx). Т.о. df(x0):хf`(x0)*х и dх:хх. Отсюда df(x0)=f’(x0)*dх => df(x0)/dх: хf`(x0)*х/х=f’(x0) при х0. В силу этого пишут также f’(x0)=df(x0)/dх - обозначение Лейбница. График диф-ла получается из графика касательной переносом начала коор динат в точку касания.

Теорема: Если ф-ция f диф-ма в точке x0, то f непрерывна в точке x0.

Докозательство: f(x)=f(x0)+f’(x0)*(x-x0)+o(x-x0)f(x0) при xx0 => f непрерывна в точке x0.

Определение: Нормаль к ф-ции f в точке x0: это прямая перпендикулярная касательной к ф-ции f в точке x0. Учитывая что тангенс угла наклона нормали равен tg(90+угол наклона касательной)= -Ctg(наклона касательной), получаем уравнение нормали: y=-1/f’(x0)*(x-x0)+f(x0)


38. Арифметика диф-цирования. Производные тригонометрических функций.

Теорема: Пусть ф-ции f и g дифференцируемы в точке x0, тогда ф-ции f+g, f*g и f/g (при g(x0)0) дифференцируемы в точке x0 и:

1) (f+g)’(x0)=f’(x0)+g’(x0)

2) (f*g)’(x0)=f’(x0)*g(x0)+f(x0)*g’(x0)

3) (f/g)’(x0)=(f’(x0)*g(x0)-f(x0)*g’(x0))/g(x0)2

Доказательство:

1) f(x0)=f(x0+x)-f(x0)

g(x0)=g(x0+x)-g(x0)

(f+g)(x0)=f(x0)+g(x0)=f(x0+x)-f(x0)+g(x0+x)-g(x0)

(f+g)(x0)/x=(f(x0+x)-f(x0)+g(x0+x)-g(x0))/x=(f(x0+x)-f(x0))/x+(g(x0+x)-g(x0))/xf’(x0)+g’(x0) при x0

2)(f*g)(x0)=f(x0+x)*g(x0+x)-f(x0)*g(x0)=(f(x0)+f(x0))*(g(x0)+(x0))-f(x0)*g(x0)=g(x0)*f(x0)+f(x0)*g(x0)+f(x0)*g(x0) (f*g)(x0)/x=g(x0)*(f(x0)/x)+f(x0)*(g(x0)/x)+(f(x0)/x)*(g(x0)/x)*xf’(x0)*g(x0)+f(x0)*g’(x0) при x0

3) Ф-ция g - дифференцируема в точке x0 => Ф-ция g - непрерывна в точке x0 => Е>0 (Е=|g(x0)|/2) >0: |x| |g(x0+x)-g(x0)| g’(уO)=1/f’(xO)

Производные:

1) xrcsin x по теореме имеем Arcsin’x=1/Sin’y, где Sin y=x при условии, что Sin’y dy=y’(t)dt=у’(х)*х’(t)*dt=у’(x)dх - видим что при переходе к новой независимой переменной форма дифференциала может быть сохранена - это свойство называют инвариантностью формы первого дифференциала.

Пусть функции у=f(х) и х=g(t) таковы, что из них можно составить сложную функцию у=f(g(t)) Если существуют производные у’(х) и х’(t) то существует производная у’(t)=у’(х)*х’(t) и по доказанному ее первый диф-ал по t можно написать в форме dy=y’(х)dх, где dх=x’(t)dt. Вычисляем второй диф-ал по t: d2y=d(y’(x)dx)=dy’(x)dx+y’(x)d(dx). Снова пользуясь инвариантностью первого диф-ла dy’(x)=у”(х2)dx => d2y=у”(х2)dx2x+y’(x)*d2x, в то время как при независимой переменной х второй диф-ал имел вид д2y=у’(х2)*dx2x => неинвариантность формы второго диф-ла.

Формула Лейбница:

f(x)=u(x)*v(x)

Доказательство по индукции.

1) n=0 верно

2) Предположим для n - верно => докажем для (n+1)

Если для u и v n+1) производные, то можно еще раз продифференцировать по х - получим:

Объединим теперь слагаемые обеих последних сумм, содержащие одинаковые произведения производных функций u и v (сумма порядков производ ных в таком произведении, как легко видеть, равна всегда (n+1)). Произведение u0*vN+1 входит только во вторую сумму с коэффициентом С0N=1. Произведение uN+1*v0 входит только в первую сумму с коэффициентом СNN=1. Все остальные произведения входящие в эти суммы имеют вид uK*vN+1-K. Каждое такое произведение встречается в первой сумме с номером k = i-1, а во второй i=k. Сумма соотв. коэффициентов будет =>

получаем fN+1(x)=u0*vN+1++ uN+1*v0=


44. Нахождение промежутков постоянства монотонности функции и ее экстремумов.

Теорема: Пусть f(x) непрерывна в замкнутом промежутке [a;b] и диф-ма в открытом промежутке (a;b), если f’(x)=0 в (a;b), то f(x)-const в [a;b].

Докозательство:

Пусть xb, тогда в замкнутом промежутке в [a;x] по теореме Лагранжа имеем: f(x)-f(a)=f’(a+(x-a))(x-a) 0 f(x)=f(a)=Const для все х(a;b).

Теорема: Пусть f(x) непрерывна в замкнутом промежутке [a;b] и диф-ма в открытом промежутке (a;b), тогда:

1) f монотонно возрастает(убывает) в нестрогом смысле в (a;b) f’(x)0(f’(x)0) в (a;b).

2) Если f’(x)>0(f’(x) f’(c)f’(c)f(x”)f(x’)( f(x”)f(x’)) => f(x) возрастает(убывает) в нестрогом смысле в (a;b).

2) Используя аналогичные (1) рассуждения, но заменяя неравенства на строгие получим (2).

Следствие: Если xO-критическая точка непрерывной ф-ции f. f’(x) в достаточно малой -окр-ти точки xO имеет разные знаки, то xO-экстремальная точка.

Достаточное условие экстремума: (+)xO(-) => локальный min, (-)xO(+) => локальный max



46. Выпуклые множества Rn. Условие Иенсена. Выпуклые функции.Неравенство Йенсена.

Определение: Множество М выпукло если  А,ВМ [А,В]М

[А,В]М => [А,В]={А+t(В-А):t[0,1]} => А(1-t)+tВМ

[А,В]М => А,ВМ; 1=1-t, 2=t => 1+2=1 1,20 => 1А+2ВМ

Рассмотрим точки: А12,...АNМ 1,20 i=1,n):= 1

Докажем что i=1,n):I М

Д-во: По индукции:

1) n=1, n=2 - верно

2) Пусть для (n-1) - верно => докажем для n:

а) =1 => приравниваем 1=...==0 => верно

б) (1-)*B + М Ч.т.д

График Гf = {(x,f(x)):хDf}, Надграфик UPf={(x,y):y>f(x)}

Определение: Функция f выпукла UPf - множество выпукло.

Условие Йенсена: АIМ 0 i=1,n):=1 => i=1,n):I М, xI0, f(xI)yI => i=1,n):I =xI;*yIf(xI)*yI

Неравенство Йенсена: АIМ 0 =1f(xI)*f(xI)


47.Критерий выпуклости дифференцируемой функции.

Теорема: Пусть f определена в интервале (a;b), тогда следующие условия эквивалентны: 1) f - выпукла в (a;b) ~ 2) x’,xO,x”(a;b) x’” AB: k=(y-f(x’))/(xO-x’)(f(xO)-f(x’))/(xO-x’) => yf(xO); AB: k=(f(x”)-y)/(x”-xO)(f(x”)-f(xO))/(x”-xO) =>yf(xO)

(f(xO)-f(x’))/(xO-x’)(f(x”)-f(xO))/(x”-xO)


Информация о работе «Математический анализ»
Раздел: Математика
Количество знаков с пробелами: 31187
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
46169
0
217

... и докажите сходимость полученного разложения к порождающей функции. Исследовать на абсолютную и условную сходимость . Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету МАТЕМАТИЧЕСКИЙ АНАЛИЗ Билет № 12 Сформулируйте теорему Ролля и объясните ее геометрический смысл. Исследуйте функцию на выпуклость и вогнутость. Какая ...

Скачать
31365
0
0

... «Математических лекциях о методе интеграла»[9]. Здесь дан способ взятия большинства элементарных интегралов и указаны методы решения многих дифференциальных уравнений первого порядка.   2 Вклад Л.Эйлера в развитие математического анализа   Леонард Эйлер (Euler, Leonhard) (1707–1783) входит в первую пятерку величайших математиков всех времен и народов. Родился в Базеле (Швейцария) 15 апреля ...

Скачать
28459
2
2

... педагогически значимого подмножества, на основе которого можно было бы провести углубленное изучение понятия экстремума в его взаимосвязях с другими понятиями математического анализа. Во-вторых, объективно получается, что традиционные коллекции упражнений созданы не столько для изучения понятия экстремума, сколько для иллюстрации методов дифференциального исчисления для его отыскания. Этого вполне ...

Скачать
17837
7
5

... решений целевая функция принимает в точке (0; 6), и это значение равно .     рис. 1 - Графическое решение задачи линейного программирования ЗАДАЧА 2   Использовать аппарат теории двойственности для экономико-математического анализа оптимального плана задачи линейного программирования Для изготовления четырех видов продукции используют три вида сырья. ...

0 комментариев


Наверх