3. sin(a-b)=sin a*sin b- sin b*cos a

4. sin (a+b)=sin a*cos b+sin b*cos a

Докажем ф-лу (1):  1) проведем радиуо ОА, равный R, вокруг точки О на угол a и b (рис50). Получим радиус ОВ и радиус ОС. 2)Пусть В(х1;у1) С(х2;у2). 3) Введем векторы ОВ(х1;у1) , ОС(х2;у2)

4)По опр-ию скалярного произведения ОВ*ОС=х1*х2+у1*у2 (*) 5) по опр-ию синуса и косинуса х1=R*cos a, y1=R*sin a, x2=R* cos b, y2=R*sin b 6) заменяя в равенстве(*) х1,х2,у1,у2, получим ОВ*ОС=R^2*cos a*cos b+R^2*sin a*sin b (**). 7) По теореме о скалярном произведении векторов ОВ*ОС=|OB|*|OC|*cosÐBOC=R^2 cosÐBOC,

ÐBOC= a-b(см. рис. 50) или ÐBOC= 2 пи-(a-b) (см. рис. 51) cos(2 пи-(a-b))=cos(a-b) следовательно ОВ*ОС=R^2*cos (a-b) (***) 8) Из неравенств (**) и (***) получим: R^2*cos(a-b)=R^2* cos a*cos b+R^2*sin a*sin b. Разделив левую и правую части на R^2¹0 получим формулу (1) косинуса разности

Cos (a-b)=cos a*cos b +sin a*sin b;

С помощью этой формулы легко вывести формулу (2) косинуса суммы и (4) синуса суммы:

Cos (a+b)=cos(a-(-b))=cos a*cos(-b)+sin a*sin (-b)= cos a*cos b-sin a*sin b значит cos(a+b)=cos a*cos b- sin a*sin b. Докажем формулу (4): sin (a+b)=cos(пи/2-(a+b))=cos((пи/2-a)-b)=cos(пи/2-a)cos b+sin(пи/2-a)sin b=sin a*cos b+cos a*sin b Значит sin (a+b)=sin a*cos b+sin b*cos a

Докажем формулу (3) Применяя последнюю формулу имеем sin(a-b)=sin(a+(-b))=sin a*cos (-b)+sin(-b)*cos a=sin a*cos b-sin b*cos a. Значит sin(a-b)=sin a*cos b-sin b*cos a. При док-ве формул (1)-(4) были использованы следующие факты:1) формулы приведения 2)ф-ция y=sin x-нечетная, ф-ция y=cos x-четная. Из формул сложения пологая b=пи n/2, где n ÎN, можно вывести формулы привидения для преобразований выражений вида cos(пи*n/2 ±a), sin(пи*n/2 ±a). Например cos(пи*n/2 -a)= cos пи/2*cos a+sin пи/2*sin a=0+sin a=sin a. Аналогично выводятся следующие формулы:

Sin (пи-а)=sin a

Sin (пи+а)=-sin a

Sin (3 пи/2-а)=-cos a и т.п. Из формул сложения следуют формулы двойного аргумента:

Sin 2a=2sin a*cos a

Cos 2a=cos^2 a-sin^2 a

Билет №15

1.Если производная функции равна 0 на некотором промежутке, то эта функция постоянна на этом промежутке.

Если g¢(x)=0 на некотором промежутке то касательная к графику функции y=g(x), например g(x)=6 в каждой точке данного промежутка параллельна оси ОХ.

2.Если f- непрерывная и неотрицательная функция на отрезке[а;b], то площадь соответствующей криволинейной трапеции можно выч-ть по формуле

S=F(b)-F(a)

Док-во:

1)    Пусть y=S(x) –площадь криволинейной трапеции, имеющей основание [a;x] где xÎ[а;b], заметим что S(a)= 0 S(b)=S

2)    Покажем что y=S(x)-первообразная ф-ция y=f(x)

т.е. S¢(x)=f(x) что бы найти производную ф-ции y=S(x),

воспользуемся опр-ем производной:

а) зададим преращение ∆x (пусть ∆x >0)

б) найдем приращение ф-ции

∆S=S(x+∆x)-S(x)

в) составим соотношение

∆S/∆x=S(x+∆x)-S(x)/ ∆x

г) выясним чему равен предел отношения при ∆x®0Разность S(x+∆x)-S(x) равна площади криволинейной трапеции с основанием [x; x+∆x]

Если ∆x®0 то эта площадь приблизительно равна площади прямоугольника f(x)* ∆x т.е.

S(x+∆x)-S(x) »f(x) * ∆x

Имеем

S(x+∆x)-S(x)/ ∆x »f(x)

При ∆x®0. Этим показано что S¢(x)=f(x)

3)Равенство S¢(x) =f(x) означает что S- первообразная функцииf на заданном промежутке.

3)По основному св-ву первообразной имеем F(x)=S(x)+C, где F- какая-либо первообразная для f.

При x=a получим ,что

F(a)=S(a)+C т.е. C=F(a).

При x=b имеем

F(b)=S(b)+F(a)

Следовательно

S=S(b)=F(b)-F(a)

Билет №16

1)           Пусть задана функция y=f(x), дифференцируемая в каждой точке промежутка I, точки a и b принадлежат этому промежутку. На интервале (a;b) найдётся такая точка с, для которой выполняется равенство f’(x)= f(b)-f(a)/b-a. Геометрически этот факт можно истолковать следующим образом. Пусть функция y=f(x) дифференцируема на некотором промежутке. Точки a и b принадлежат этому промежутку; через точки A(a;f(a)) и B(b;f(b)) проведена секущая. Тогда на интервале (a;b) найдётся такая точка с, что угловой коэффициент касательной, проведённой через точку (с; f(c)), будет равен угловому коэффициенту секущей АВ (рис 55).

2)           Функция заданная формулой f(x)=x^a, называется степенной. Свойства степенной функции при а>1 1)D(f)=[0;+¥], если а не является натуральным числом. Это следует из определения степени с рациональным показателем. Если а натуральное число, то D(f)=(-¥;+¥) по определению степени с натуральным показателем. 2)E(f)=[0;+¥) для всех а>1, кроме а= 2R+1. Где RÎN. Это следует из определения степени с рациональным показателем. E(f)=(-¥;+¥) для нечётных а,т.е. а=2R+1, где RÎN. 3)Если а-чётное натуральное число, то данная функция является чётной. Т.к. f(-x)=(-x)^2R = ((-x)^2)^R= (x^2)^R = x^2R = f(x). Если а-нечётное натуральное число. то данная функция является нечётной, так как f(-x)=(-x)^2R+1 + (-x)^2R (-x)= x^2R * (-x)=-x^2R * x+ -x^2R+1 + -f(x). 4)При х=0 функция f(x)=0, так как 0^a = 0 при а>0. 5)При x>0 функция f(x)>0. Это следует из определения степени с рациональным показателем. При нечётных а(а=2R+1, RÎN), если х<0, функция принимает отрицательные значения. Так как x^2R+1+x^2R, x^2R>0, но x<0, следовательно, произведение x^2R x<0, т.е. f(x)<0 при x<0. 6) Функция является возрастающей на промежутке [0;+¥) для любого a>1. Из свойства степени с рациональным показателем (r-рациональное число и 0<a<b, тогда a^r<b^r при r>0) следует, что x1^a<x2^a. Таким образом, меньшему значению аргумента соответствует меньшее значение функции, т.е. функция y=f(x) возрастает на промежутке [0;¥). Докажем, что если ф- нечётное число, то функция возрастает и на промежутке (-¥;0] (рис56б). Пусть x1<x2<0, тогда x1^a< x2^a по определению степени с целым отрицательным показателем. Т.е. данная функция возрастает по определению возрастающей на промежутке функции. Аналогично можно доказать, что функция y=f(x) на промежутке (-¥;0] убывает, если а – чётное целое (рис56а).

Билет №17

1)    Пусть задана сложная ф-ция g(x)=f(kx+b).

Если ф-ция f имеет производную в точке kx0+b, то производную ф-ции g можно найти по формуле g¢(x0)=kf¢(kx0+b).

Например найдем производную ф-ции g(x)=(7x-9)^19

g¢(x)=7*19(7x-9)^18=133(7x-9)^18


Информация о работе «Bilet»
Раздел: Математика
Количество знаков с пробелами: 39782
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
41301
12
2

... и служит сырьем для цементной промышленности. Уровень развития и факторы размещения основных отраслей промышленности, сельского хозяйства и непроизводственной сферы.   Экономика Республики Корея - двенадцатая экономика в мире по величине ВВП. С 1979 г. Корея проводит политику экономической открытости для зарубежных инвесторов, что привело к широкомасштабным американским, японским и ...

Скачать
71394
18
4

... ссудного капитала. Поэтому неудивительно, что в 50—60-х годах капиталовложения значительно опережали величину внутренних сбережений. (В.И. Шипаева "Южная Корея в системе мирового капиталистического хозяйства", Мир, Москва, 1994; В.К. Ломакин "Мировая экономика", Финансы, М, 1998).   Таблица 1. Сбережения и капиталовложения, % к ВВП   1976 1980 1985 1990 1995 ...

Скачать
31973
1
0

... - высокая начальная стоимость разработки, отсутствие устоявшихся бизнес-процессов, требующее периодического "доведения" системы, необходимость наличия компьютеров, постоянно подключенных к Интернету. Сайты туристских агентств. Наиболее технологичными среди этих сайтов являются электронные магазины - такой вид агентских сайтов только начинает вырисовываться на современном он-лайновом туристском ...

Скачать
134513
4
9

... свой профессиональный опыт. Самое важное, что удается избавиться от балласта, который неизбежно накапливается в любой организации.   Глава 3. Формирование корпоративной культуры на примере Студии Артемия Лебедева 3.1. «Студия Артемия Лебедева» Студия Артемия Лебедева — крупнейшая в России компания, профессионально занимающаяся дизайном, основанная Артемием Лебедевым в 1995 году. Занимается и ...

0 комментариев


Наверх