2.12. Источники изменчивости

Необходимо ясно себе представлять, что взаимодействие между дискретной и непрерывной изменчивостью и средой делает возможным существование двух организмов с идентичным фенотипом. Механизм репликации ДНК при митозе столь близок к совершенству, что возможности генетической изменчивости у организмов с бесполым размножением очень малы. Поэтому любая видимая изменчивость у таких организмов обусловлена воздействиями внешней среды. Что же касается организмов, размножающихся половым путем, то у них есть широкие возможности для возникновения генетических различий. Практически неограниченными источниками генетической изменчивости служат два процесса, происходящие во время мейоза:

1.           Реципкорный обмен между хроматидами гомологичных хромосом, который может происходить в профазе 1 мейоза. Он создает новые группы сцепления, т.е. служит важным источником генетической рекомбинации аллелей.

2.           Ориентация пар гомологичных хромосом (бивалентов) в экваториальной плоскости веретена в метафазе I мейоза определяет направление, в котором каждый член пары будет перемещаться в анафазе I. Эта операция носит случайный характер. Во время метафазы II пары хроматид опять-таки ориентируются случайным образом, и этим определяется, к какому из двух противоположных полюсов направится та или иная хромосома во время анафазыII. Случайная ориентация и последующее независимое расхождение (сегрегация) хромосом делают возможным большое число различных хромосомных комбинаций в гаметах; число это можно подсчитать.

Третий источник изменчивости при половом размножении – это то, что слияние мужских и женских гамет, приводящее к объединению двух гаплоидных наборов хромосом в диплоидном ядре зиготы, происходит совершенно случайным образом (во всяком случае, в теории); любая мужская гамета потенциально способна слиться с любой женской гаметой.

Эти три источника генетической изменчивости и обеспечивают постоянную «перетасовку» генов, лежащую в основе все время происходящих генетических изменений. Среда оказывает воздействие на весь ряд получающихся таким образом фенотипов, и те из них, которые лучше всего приспособлены к данной среде, преуспевают. Это ведет к изменениям частот аллелей и генотипов в популяции. Однако эти источники изменчивости не порождают крупных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.


2.13. Мутации

Мутацией называют изменение количества или структуры ДНК данного организма. Мутация приводит к изменению генотипа, которое может быть унаследовано клетками, происходящими от мутантной клетки в результате митоза или мейоза. Мутирование может вызывать изменения каких-либо признаков в популяции. Мутации, возникшие в половых клетках, передаются следующим поколениям организмов, тогда как мутации, возникшие в соматических клетках, наследуются только дочерними клетками, образовавшимися путем митоза и такие мутации называют соматическими.

Мутации, возникающие в результате изменения числа или макроструктуры хромосом, известны под названием хромосомных мутаций или хромосомных аберраций (перестроек). Иногда хромосомы так сильно изменяются, что это можно увидеть под микроскопом. Но термин «мутация» используют главным образом для обозначения изменения структуры ДНК в одном локусе, когда происходит так называемая генная, или точечная, мутация.

Представление о мутации как о причине внезапного появления нового признака было впервые выдвинуто в 1901 г. голландским ботаником Гуго де Фризом, изучавшим наследственность у энотеры Oenothera lamarckiana. Спустя 9 лет Т.Морган начал изучать мутации у дрозофилы, и вскоре при участии генетиков всего мира у нее было идентифицировано более 500 мутаций.


2.14. Генные мутации

Внезапные спонтанные изменения фенотипа, которые нельзя связать с обычными генетическими явлениями или микроскопическими данными о наличии хромосомных аберраций, можно объяснить только изменениями в структуре отдельных генов. Генная, или точечная (поскольку она относится к определенному генному локусу), мутация – результат изменения нуклеотидной последовательности молекулы ДНК в определенном участке хромосомы. Такое изменение последовательности оснований в данном гене воспроизводится при транскрипции в структуре иРНК и приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся в результате трансляции на рибосомах.

Существуют различные типы генных мутаций, связанных с добавлением, выпадением или перестановкой оснований в гене. Это дупликации, вставки, делеции, инверсии или замены оснований. Во всех случаях они приводят к изменению нуклеотидной последовательности, а часто – и к образованию измененного полипептида. Например, делеция вызывает сдвиг рамки.

Генные мутации, возникающие в гаметах или в будущих половых клетках, передаются всем клеткам потомков и могут влиять на дальнейшую судьбу популяции. Соматические генные мутации, происходящие в организме, наследуются только теми клетками, которые образуются из мутантной клетки путем митоза. Они могут оказать воздействие на тот организм, в котором они возникли, но со смертью особи исчезают из генофонда популяции. Соматические мутации, вероятно, возникают очень часто и остаются незамеченными, но в некоторых случаях при этом образуются клетки с повышенной скоростью роста и деления. Эти клетки могут дать начало опухолям – либо доброкачественным, которые не оказывают особого влияния на весь организм, либо злокачественным, что приводит к раковым заболеваниям.

Эффекты генных мутаций чрезвычайно разнообразны. Большая часть мелких генных мутаций фенотипически не проявляется, поскольку они рецессивны, однако известен ряд случаев, когда изменение всего лишь одного основания в определенном гене оказывает глубокое влияние на фенотип. Одним из примеров служит серповидноклеточная анемия – заболевание, вызываемое у человека заменой основания в одном из генов, ответственных за синтез гемоглобина. Молекула дыхательного пигмента гемоглобина у взрослого человека состоит из четырех полипептидных цепей (двух a- и двух b– цепей), к которым присоединены четыре простетические группы гема. От структуры полипептидных цепей зависит способность молекулы гемоглобина переносить кислород. Изменение последовательности оснований в триплете, кодирующем одну определенную аминокислоту из 146, входящих в состав b- цепей, приводит к синтезу аномального гемоглобина серповидных клеток (HbS). Последовательности аминокислот в нормальных и аномальных a -цепях различаются тем, что в одной точке аномальных цепей гемоглобина S глутамидовая кислота замещена валином.В результате такого, казалось бы, незначительного изменения гемоглобин S кристаллизуется при низких концентрациях кислорода, а это в свою очередь приводит к тому, что в венозной крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. Физиологический эффект мутации состоит в развитии острой анемии и снижении количества кислорода, переносимого кровью. Анемия не только вызывает физическую слабость, но и может привести к нарушениям деятельности сердца и почек и к ранней смерти людей, гомозиготных по мутантному аллелю. В гетерозиготном состоянии этот аллель вызывает значительно меньший эффект: эритроциты выглядят нормальными, а аномальный гемоглобин составляет только около 40 %. У гетерозигот развивается анемия лишь в слабой форме, а зато в тех областях, где широко распространена малярия, особенно в Африке и Азии, носители аллеля серповидноклеточности невосприимчивы к этой болезни. Это объясняется тем, что ее возбудитель - малярийный плазмодий - не может жить в эритроцитах, содержащих аномальный гемоглобин.


2.15. Летальные мутацииИзвестны случаи, когда один ген может оказывать влияние на несколько признаков, в том числе и на жизнеспособность. Летальные мутации вызывают такие изменения в развитии, которые несовместимы с жизнедеятельностью. Доминантные летальные гены трудны для изучения, и сведения о них ограничены. Напротив, гены с рецессивным летальным действием изучены гораздо лучше. Известно множество рецессивных мутаций у различных организмов, которые никак себя не проявляют фенотипически. Существует также очень много доминантных мутаций, имеющих в гетерозиготном состоянии четко отличающийся фенотип, которые в гомозиготном состоянии вызывают летальный эффект. Фаза летального действия, т.е. время, когда мутантный ген реализуется, существенно варьирует: от самых первых этапов эмбрионального развития до периода полового созревания. В некоторых случаях летальные гены могут иметь более одной фазы летального действия. Это означает, что ген или его продукты могут иметь несколько раз активно работать и использоваться в ходе онтогенеза. Летальный эффект одних мутантных генов проявляется всегда, другие показывают существенную зависимость от условий среды. У человека и у других млекопитающих определенный рецессивный ген вызывает образование внутренних спаек легких, что приводит к смерти при рождении. Другим примером служит ген, который влияет на формирование хряща и вызывает врожденные уродства, ведущие к смерти новорожденного.

Воздействие летального гена ясно видно на примере наследования окраски шерсти у мышей. У диких мышей шерсть обычно серая, типа агути; но у некоторых мышей шерсть желтая. При скрещивании между желтыми мышами в потомстве получаются как желтые мыши, так и агути в отношении 2:1. Единственное возможное объяснение таких результатов состоит в том, что желтая окраска шерсти доминирует над агути, и что все желтые мыши гетерозиготны. Атипичное менделевское отношение объясняется гибелью гомозиготных желтых мышей до рождения. При вскрытии беременных желтых мышей, скрещенных с желтыми же мышами, в их матках были обнаружены мертвые желтые мышата. Если же скрещивались желтые мыши и агути, то в матках беременных самок не оказывалось желтых мышат, поскольку при таком скрещивании не может быть потомства, гомозиготного по гену желтой шерсти.

Мутации, характеризующиеся в гомозиготном состоянии летальным эффектом, далеко не всегда фенотипически проявляются у гетерозигот. К их числу относится комплекс рецессивных t- мутаций у мышей, локализованных в аутосоме. Одной из самых ранних мутаций у млекопитающих, является мутация t12, вызывающая гибель гомозигот уже на стадии морулы (~20-30 клеток). Гетерозиготные животные  имеют нормальный фенотип и жизнеспособность.

Летальные мутации обнаруживаются не только у животных. Наглядный пример, иллюстрирующий летальное действие генов у растений, - явление хлорофильных мутаций. У гомозиготных по хлорофильной мутации растений нарушен синтез молекулы хлорофилла. Такие растения развиваются до тех пор, пока запасы питательных веществ в семени не иссякают, поскольку они не способны к фотосинтезу.



Информация о работе «Основные проблемы генетики и механизм воспроизводства жизни»
Раздел: Биология
Количество знаков с пробелами: 61303
Количество таблиц: 2
Количество изображений: 5

Похожие работы

Скачать
18596
0
0

... , фармакологической промышленности и других областях деятельности применяется все больше химических соединений, среди которых используется немало мутагенов. В связи с этим можно выделить следующие основные проблемы генетики. Наследственные болезни и их причины.   Наследственные болезни могут быть вызваны нарушениями в отдельных генах, хромосомах или хромосомных наборах. Впервые связь между ...

Скачать
25970
0
2

... Подводя итог, можно сказать, что именно выделение живой самостоятельной клетки из окружающей среды и стало толчком к началу эволюции жизни на земле и роль клетки в развитии всего живого является главенствующей.   4. Основные проблемы цитологии Перед современной цитологией стоит ряд серьёзных задач, важнейших для общества. Если так и не решенный вопрос о происхождении жизни и выделении живой ...

Скачать
35300
0
1

... , состоящего из ядра свиньи, перенесенного в яйцо коровы. Так что сейчас трудно до конца представить фантастические возможности, которые несут в себе современная молекулярная генетика и эмбриогенетика. Главная интрига в проблеме – клонирование человека? Но здесь надо иметь в виду не столько технические проблемы, сколько этические, психологические. Первое: в процессе клонирования может быть брак, ...

Скачать
126782
0
0

... . Совокупность сцепленных генов одной хромосомы, контролирующих аллогруппу, называют гаплотипом. Значение: 1) изучение причин и динамики генотипической изменчивости, составляющей основу эволюционной генетики; 2) уточнение происхождения отдельных животных; 3) определения моно- и дизиготных двоен; 4) построение генетических карт хромосом; 5) использование биохимических систем в качестве генетических ...

0 комментариев


Наверх