3.4. Квантовая хромодинамика

Следующий шаг на пути Великого объединения фундаментальных взаимодействий - слияние сильного взаимодействия с электрослабым. Для этого необходимо придать черты калибровочного поля сильному взаимодействию и ввести обобщенное представление об изотопической симметрии. Сильное взаимодействие можно представлять как результат обмена глюонами, который обеспечивает связь кварков (попарно или тройками) в адроны.

Замысел здесь состоит в следующем. Каждый кварк обладает аналогом электрического заряда, служащим источником глюонного поля. Его назвали цветом (Разумеется, это название не имеет никакого отношения к обычному цвету). Если электромагнитное поле порождается зарядом только одного сорта, то для создания более сложного глюонного поля потребовалось три различных цветовых заряда. Каждый кварк "окрашен" в один из трех возможных цветов, которые совершенно произвольно были названы красным, зеленым и синим. И соответственно антикварки бывают антикрасные, антизеленые и антисиние.

На следующем этапе теория сильного взаимодействия развивается по той же схеме, что и теория слабого взаимодействия. Требование локальной калибровочной симметрии (т.е. инвариантности относительно изменений цвета в каждой точке пространства) приводит к необходимости введения компенсирующих силовых полей. Всего требуется восемь новых компенсирующих силовых полей. Частицами - переносчиками этих полей являются глюоны, и, таким образом, из теории следует, что должно быть целых восемь различных типов глюонов. (В то время как переносчик электромагнитного взаимодействия - всего лишь один (фотона), а переносчиков слабого взаимодействия - три.) Глюоны имеют нулевую массу покоя и спин 1. Глюоны также имеют различные цвета, но не чистые, а смешанные (например, сине-антизеленый). Поэтому, испускание или поглощение глюона сопровождается изменением цвета кварка ("игра цветов"). Так, например, красный кварк, теряя красно-антисиний глюон, превращается в синий кварк, а зеленый кварк, поглощая сине-антизеленый глюон, превращается в синий кварк. В протоне, например, три кварка постоянно обмениваются глюонами, изменяя свой цвет. Однако такие изменения носят не произвольный характер, а подчиняются жесткому правилу: в любой момент времени "суммарный" цвет трех кварков должен представлять собой белый свет, т.е. сумму "красный + зеленый + синий". Это распространяется и на мезоны, состоящие из пары кварк - антикварк. Поскольку антикварк характеризуется антицветом, такая комбинация заведомо бесцветна ("белая"), например красный кварк в комбинации с антикрасным кварком образует бесцветный мезон.

С точки зрения квантовой хромодинамики (квантовой теории цвета) сильное взаимодействие есть не что иное, как стремление поддерживать определенную абстрактную симметрию природы: сохранение белого цвета всех адронов при изменении цвета их составных частей. Квантовая хромодинамика великолепно объясняет правила, которым подчиняются все комбинации кварков, взаимодействие глюонов между собой (глюон может распадаться на два глюона или два глюона слить в один - поэтому и появляются нелинейные члены в уравнении глюонного поля), сложную структуру адрона, состоящего из "одетых" в облака кварков и др.

Возможно, пока преждевременно оценивать квантовую хромодинамику как окончательную и завершенную теорию сильного взаимодействия, тем не менее ее достижения многообещающи.

3.5. На пути к... Великому объединению

С созданием квантовой хромодинамики появилась надежда на создание единой теории всех (или хотя бы трех из четырех) фундаментальных взаимодействий. Модели единым образом описывающие хотя бы три из четырех фундаментальных взаимодействий, называются моделями Великого объединения. Теоретические схемы, в рамках которых объединяются все известные типы взаимодействий (сильное, слабое, электромагнитное и гравитационное) называются моделями супергравитации.

Опыт успешного объединения слабого и электромагнитного взаимодействий на основе идеи калибровочных полей подсказал возможные пути дальнейшего развития принципа единства физики, объединения фундаментальных физических взаимодействий. Один из них основан на том удивительном факте, что константы взаимодействия электромагнитного, слабого и сильного взаимодействий становятся равными друг другу при одной и той же энергии. Эту энергию называли энергией объединения. При энергии более 1 0 n ГэВ, где n = 1 4 или на расстояниях r < 1 0 n см, где n = - 2 9 , сильные и слабые взаимодействия описываются единой константой, т. е. имеют общую природу. Кварки и лептоны здесь практически не различимы.

В 70-90 -е годы было разработано несколько конкурирующих между собой теорий Великого объединения. Все они основаны на одной и той же идее. Если электрослабое и сильное взаимодействия в действительности представляют собой лишь две стороны великого единого взаимодействия, то последнему также должно соответствовать калибровочное поле с некоторой сложной симметрией. Она должна быть достаточно общей, способной охватить все калибровочные симметрии, содержащиеся и в квантовой хромодинамике и в теории электрослабого взаимодействия. Отыскание такой симметрии - главная задача на пути создания единой теории сильного и электрослабого взаимодействия. Существуют разные подходы, порождающие конкурирующих варианты теорий Великого объединения.

Тем не менее все эти гипотетические варианты Великого объединения имеют ряд общих особенностей.

Во - первых, во всех гипотезах кварки и лептоны - носители сильного и электрослабого взаимодействий - включаются в единую теоретическую схему. До сих пор они рассматривались как совершенно различные объекты.

Во - вторых, привлечение абстрактных калибровочных симметрий приводит к открытию новых типов полей, обладающих новыми свойствами, например способностью превращать кварки в лептоны. В простейшем варианте теории Великого объединения для превращения кварков в лептоны требуется двадцать четыре поля. Двенадцать из квантов эти полей уже известны: фотон, две W -частицы, Z -частица и восемь глюонов. Остальные двенадцать квантов - новые сверхтяжелые промежуточные бозоны, объединенные общим названием Х и У -частицы (с электрическим зарядом 1 / 3 и 4 / 3 ). Эти кванты соответствуют полям, поддерживающим более широкую калибровочную симметрию и перемешивающим кварки с лептонами. Следовательно, кванты этих полей (т.е. Х и У -частицы) могут превращать кварки в лептоны (и наоборот).

На основе теорий Великого объединения предсказаны по крайней мере две важных закономерности, которые могут и должны быть проверены экспериментально: нестабильность протона и существование магнитных монополей. Экспериментальное обнаружение распада протона и магнитных монополей могло бы стать веским доводом в пользу теорий Великого объединения. На проверку этих предсказаний направлены усилия экспериментаторов. Но пока еще твердо установленных экспериментальных данных на этот счет нет. Дело в том, что теории Великого объединения имеют дело с энергией частиц выше 1 0 n ГэВ, где n = 1 4 . Это очень высокая энергия. Трудно сказать, когда удастся получить частицы столь высоких энергий в ускорителях. Этим объясняется, в частности, трудность обнаружения Х и У- бозонов. И потому основной областью применения и проверки теорий Великого объединения является космология. Без этих теорий невозможно описать раннюю стадию эволюции Вселенной, когда температура первичной плазмы достигала 1 0 n К, где n = 2 7 . Именно в таких условиях могли рождаться и аннигилировать сверхт

 

Список литературы

Азимов А. Краткая история биологии. М.,1967.

Алексеев В.П. Становление человечества. М.,1984. Бор Н. Атомная физика и человеческое познание. М.,1961 Борн М. Эйнштейновская теория относительности.М.,1964.

Вайнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной. М.,1981.

Гинзбург В.Л.О теории относительности. М.,1979.

Дорфман Я.Г. Всемирная история физики с начала 19 века до середины 20 века. М.,1979.

Кемп П., Армс К. Введение в биологию. М.,1986.

Кемпфер Ф. Путь в современную физику. М.,1972.

Либберт Э. Общая биология. М.,1978 Льоцци М. История физики. М.,1972.

Моисеев Н.Н. Человек и биосфера. М.,1990.

Мэрион Дж. Б. Физика и физический мир. М.,1975

Найдыш В.М. Концепции современного естествознания. Учебное пособие. М.,1999.

Небел Б. Наука об окружающей среде. Как устроен мир. М.,1993.

Николис Г., Пригожин И. Познание сложного. М.,1990.

Пригожин И.,Стенгерс И. Порядок из хаоса. М.,1986.

Пригожин И., Стенгерс И. Время, Хаос и Квант. М.,1994.

Пригожин И. От существующего к возникающему. М.,1985.

Степин В.С. Философская антропология и философия науки. М.,1992.

Фейнберг Е.Л. Две культуры. Интуиция и логика в искусстве и науке. М.,1992.

Фролов И.Т. Перспективы человека. М.,1983.


Информация о работе «Мир элементарных частиц»
Раздел: Математика
Количество знаков с пробелами: 48724
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
101982
6
13

... и искомыми величинами. Последовательность действий, которые надо выполнить, чтобы от исходных данных перейти к искомым величинам, называют алгоритмом. 2.  Историческое развитие моделей элементарных частиц 2.1 Три этапа в развитии физики элементарных частиц Этап первый. От электрона до позитрона: 1897-1932гг (Элементарные частицы - "атомы Демокрита" на более глубоком уровне) Когда греческий ...

Скачать
23047
6
13

... тяготения электрона , где r2 ~ 2.5 × 10-31 см дает значения для порядка 1.8 эв. Масса покоя vm и vt практически не отличается от , если не учитывать поправок, вносимых mвирт 4,5 (n = 4,5), а именно, , . 5. Космологическая постоянная (плотность вакуума) и соотношение космических энергий Обнаруженная в последних астрономических наблюдениях, величина плотности вакуума составляет , Где r пл – ...

Скачать
28581
0
0

... массы) и в то же время относительно устойчивые y-частицы, с временем жизни, необычно большим для резонансов. Они оказались тесно связанными с новым семейством элементарных частиц — “очарованных”, первые представители которого (D0, D+, Lс) были открыты в 1976. В 1975 были получены первые сведения о существовании тяжёлого аналога электрона и мюона (тяжёлого лептона t). В 1977 были открыты Ў-частицы ...

Скачать
25766
0
35

... рассмотрении. Кроме того, не все так гладко с выбором метрики. Как ни жаль, но подробное обсуждение данных вопросов далеко выходит за рамки популярного введения в физику элементарных частиц. Любопытный и, пожалуй, удивительный для неспециалистов факт заключается в том, что предсказания квантовой механики и квантовой теории поля с экспериментальной точки зрения подтверждены гораздо точнее, чем ...

0 комментариев


Наверх