1.3 Валентність і ступінь окислення

Валентність атома того або іншого елемента в хімічній сполуці визначається числом загальних електронних пар (числом ковалентних зв'язків і графічно відповідає числу "рисок" між атомами в структурній формулі з'єднання). Наприклад, атом нітрогену має на зовнішньому валентному рівні три неспарених електрони:

атомний електрон валентність квантовий

↑↓

2s23 і валентність нітрогену дорівнює трьом: у молекулах нітрогену N ≡ N, гідразину H2N-NH2, аміаку NH3.

Ступінь окислення - це умовний електричний заряд, який одержав би даний атом, якби кожна загальна пара електронів, що зв'язує його з іншими атомами, цілком перемістилася до більш електронегативного атома. Іншими словами, ступінь окислення - це умовний заряд атома в молекулі, обчислений, виходячи з припущення, що молекула складається тільки з іонів. Наприклад, у розглянутих вище з'єднаннях нітроген стосовно гідрогену поляризований негативно, тому що відносні електронегативності нітрогену й гідрогену відповідно рівні 3,1 і 2,1 (єднальна пара електронів цілком перемістилася до нітрогену).

Таким чином, ступінь окислення нітрогену в молекулах N2, N2H4, NH3 дорівнює відповідно 0, -II, -III. Відзначимо, що ступінь окислення прийнято позначати римськими цифрами, що підкреслює формальний, умовний характер цієї величини - на відміну від реальної величини заряду іонів, для позначення якої використовують арабські цифри, наприклад, Са2+, Аl3+ .

Для того, переконатися в розходженні понять "валентність" і "ступінь окислення", визначимо, наприклад, ступінь окислення атома вуглецю в молекулах метану, метилового спирту, формальдегіду, мурашиної кислоти і диоксиду вуглецю.

Таким чином, ступінь окислення є більш конкретним поняттям, чим валентність; дійсно, значення ступеня окислення атома вуглецю у вищенаведених з'єднаннях показують, що вуглець знаходиться в них не в однаковому стані (у той час як, з погляду валентності, ці розходження не розкриваються, тому що вуглець у всіх своїх з'єднаннях чотиривалентний).

Окислювально-відновні реакції - це реакції, що протікають із зміною ступеня окислення атомів, що входять до складу молекул реагуючих речовин; в окисників вона знижується, а у відновників підвищується.

1.4 Енергетика хімічних реакцій

У 1840 р. російський вчений Г.І. Гесс сформулював закон, що є основним законом термохімії: "Сумарний тепловий ефект ряду послідовних хімічних реакцій дорівнює сумарному тепловому ефектові будь-якого іншого ряду реакцій, якщо вихідні речовини і їхні стани в обох випадках однакові і якщо однакові також кінцеві продукти і їхні стани". Іншими словами, тепловий ефект реакції залежить тільки від початкового й кінцевого стану системи і не залежить від шляху переходу з початкового стану в кінцевий.

Закон Гесса є цілком строгим тільки для процесів, що відбуваються при постійному тиску або при постійному обсязі. Для цих процесів він може розглядатися як частна форма вираження закону збереження енергії стосовно до хімічних реакцій. Велике практичне значення для розрахунку теплових ефектів реакцій мають наслідки із закону Гесса.

Перший наслідок.

Тепловий ефект реакції дорівнює сумі ентальпій утворення продуктів з вирахування суми ентальпій утворення вихідних речовин з урахуванням стехіометричних коефіцієнтів. Як вихідні речовини, так і продукти реакції можна синтезувати з простих речовин у стандартних умовах, тому зміну ентальпії реакції ΔrН0 знаходимо по рівнянню:

ΔrНo = ∑ν’i∙ ΔН˚утв(прод) - ∑ νi∙ ΔН˚утв(вих.р.) ,

де ∑ν’i∙ΔН˚утв(прод) - сума стандартних ентальпій утворення продуктів реакції з урахуванням стехіометричних коефіцієнтів (ν’i);

∑νi∙ΔН˚утв(вих.р.) – сума стандартних ентальпій утворення вихідних речовин з урахуванням стехіометричних коефіцієнтів (νi);

Справедливо також ствердження: тепловий ефект реакції дорівнює сумі енергій зв'язків молекул вихідних речовин за винятком суми енергій зв'язків продуктів з урахуванням стехіометричних коефіцієнтів.

Значення теплового ефекту реакції дозволяє оцінити кількість тепла, що поглинається або виділяється в ході хімічної реакції, але не дозволяє відповісти на запитання про можливість або неможливість протікання реакції в даних умовах.

У відповідності з другим початком термодинаміки - мимовільне протікання процесу можливе тільки убік збільшення ентропії (для адіабатно-ізольованих систем). Так як ентропія є функцією стану системи, то стандартна зміна ентропії в результаті здійснення хімічної реакції (стандартна ентропія реакції) обчислюється як сума стандартних ентропій продуктів з вирахуванням суми стандартних ентропій вихідних речовин з урахуванням стехіометричних коефіцієнтів.

Зміна ентропії реакції:

ΔrSo =∑ν’i∙ So(прод) – ∑νi∙ Sо(вих. р.) ,

де ∑ν’i∙So(прод) – сума стандартних ентропій продуктів реакції з урахуванням стехіометричних коефіцієнтів (ν’i);

∑νi∙ S°(вих. р.) - сума стандартних ентропій вихідних речовин з урахуванням стехіометричних коефіцієнтів (νi).

У закритих системах в ізобарно-ізотермічних умовах (р, Т=const) критерієм спрямованості мимовільного хімічного процесу є знак зміни енергії Гіббса (ΔG = ΔН – ТΔS ):

а) якщо ΔG<0 (енергії Гіббса убуває), то процес мимовільно може протікати в прямому напрямку, тобто термодинамічно можливий;

б) якщо ΔG>0 (енергії Гіббса зростає), то мимовільно може протікати тільки процес у зворотному напрямку;

в) якщо ΔG=0, то система знаходиться в стані термодинамічної рівноваги і температура рівноймовірності протікання прямої і зворотної реакцій може бути обчислена по рівнянню: Тр= ΔН / ΔS.

У першому наближенні, питання про термодинамічну можливість проведення звичайно вирішується на основі аналізу зміни енергії Гіббса реакції, проведеної у стандартних термодинамічних умовах:

ΔrGo = ΔrНo – ТΔrSo і в припущенні, що значення ΔrНo і ΔrSo не залежать від температури.

1.5 Хімічна кінетика і швидкість хімічної реакції

У хімії і хімічній технології, як правило, при розробці і реалізації того або іншого хімічного процесу доводиться вирішувати дві великі проблеми. Перша з них зв'язана з можливістю протікання хімічної реакції з метою одержання бажаного продукту за певних умов (температура, тиск та інші фактори), наприклад синтез аміаку з гідрогену й нітрогену по реакції: N2(г)+ 3H2(г) ↔ 2NH3(г)

На це питання дає відповідь хімічна термодинаміка, що дозволяє визначити спрямованість хімічного процесу і вихід цільового продукту в конкретних умовах його проведення. Однак термодинамічний підхід указує тільки на принципову можливість мимовільного протікання реакції.

Разом з тим для практики дуже важливо знати, як швидко пройде реакція або, іншими словами, яка швидкість мимовільного процесу, дозволеного з позицій термодинаміки. Розділ хімії, що вивчає швидкості і механізми реакцій, називається хімічною кінетикою (від греч. kinetikos — який приводить у рух). Предметом хімічної кінетики є дослідження закономірностей протікання хімічних процесів у часі (їхніх швидкостей у залежності від ряду факторів — температури, тиску, концентрацій та ін.) та механізмів хімічних реакцій або їх окремих стадій.

Хімічна кінетика дозволяє розраховувати час досягнення заданих ступенів перетворення вихідних речовин у процесах і мінімізувати цей час шляхом оптимального варіювання факторів, що впливають на швидкість реакції. Таким чином, для практичного впровадження хіміко-технологічних процесів необхідний комплексний підхід, що враховує основні закони як хімічної термодинаміки, так і хімічної кінетики.

У 1865 р. М.М.Бекетов, а в 1867 р. норвезькі вчені К.Гульдберг і П.Вааге на основі експериментальних даних сформулювали основний постулат хімічної кінетики, або закон діючих мас, що виражає залежність швидкості реакції від концентрації реагентів: при постійній температурі швидкість елементарної хімічної реакції пропорційна добуткові концентрацій реагуючих речовин у ступенях, рівних їх стехіометричним коефіцієнтам.

Наприклад, для реакції: a + b → продукти закон діючих мас приймає вираження:

Vпр=k[A]a[B]b,

де k – коефіцієнт пропорційності, який називається константою швидкості реакції;

a, b – частні кінетичні порядки або порядки реакції по речовинах А и В відповідно.

Загальним кінетичним порядком реакції називається сума частних порядків. Для простих необоротних реакцій загальний порядок приймає значення 0, 1, 2 і 3. Для складних реакцій загальний порядок може бути цілим числом і дробовим, позитивним і негативним. Порядок реакції визначається на підставі кінетичних даних, тобто залежності концентрації речовин від часу протікання реакції.

Константа швидкості реакції визначається природою реагуючих речовин і при даній температурі є величиною постійною. Історично відомі два види залежності константи швидкості від температури: емпіричне правило Вант-Гоффа і більш строге рівняння Ареніуса. В області помірних температур для гомогенних і багатьох гетерогенних реакцій справедливо правило Вант-Гоффа: при постійних концентраціях реагуючих речовин збільшення температури на 10о С (або 10 К) приводить до зростання швидкості реакції в 2÷4 рази.

Відповідно до рівняння Ареніуса швидкість реакції з підвищенням температури збільшується по експонентному закону:

k = ko exp(-EA/(RT)),

де ko – предекспоненційний множник у рівнянні Ареніуса;

EA – енергія активації хімічної реакції.


2. Практична частина

2.1 Завдання 1

Написати електронну конфігурацію атомів нітрогену і церію.

Рішення:

Нітроген, атомний номер 7, число електронів 7.

Нітроген має електронну конфігурацію 1s² 2s² 2p³.

Церій, атомний номер 58, число електронів 58.

Церій має електронну конфігурацію:

1s² 2s² 2p6 3s² 3p6 3d¹º 4s² 4p6 4d¹º 4f² 5s² 5p6 6s².


Информация о работе «Реакційна здатність неорганічних сполук»
Раздел: Химия
Количество знаков с пробелами: 20116
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
69756
2
1

... при тій же температурі. Температура в печі контролювалася за допомогою термопари, під’єднаної до регулятора температури (точність регулювання ± 5оС). 2.2 Рентгенографічні дослідження LaBa2Cu3O7 та SmBa2Cu3O7 Рентгенографічне дослідження зразків LaBa2Cu3O7 та SmBa2Cu3O7 проведено на рентгенівському дифрактометрі ДРОН – 3 в області кутів 12< Ө< 74о з використанням СоКα випромі ...

Скачать
56774
10
8

... дозволяє отримати грубу модель структури або субструктури [ 3,4 ]. Розділ 4. Техніка експерименту і характеристика методів проведення дослідження 4.1 Синтез твердих розчинів LnBa2Cu3O7 та LnxLa1-xBa2Cu3O7 (де Ln = Gd, Ho) Зразки полікристалічних розчинів LnBa2Cu3O7 (де Ln = Gd, Ho) були синтезовані твердо-фазним методом. Як вихідні речовини використовувались купрум (II) оксид CuO, барій ...

Скачать
25567
0
0

... осаду РbCl2 при дії на розчини солей свинцю (ІІ) соляною кислотою або розчинними хлоридами; г) утворення жовтого осаду РbCl2 при введенні йодид-іонів в розчини солей свинцю (ІІ).   6. Основні закони хімії та їх наслідки   1. Закон збереження маси речовини: маса речовин, які вступили в реакцію, дорівнює масі речовин, отриманих внаслідок реакції. 2. Закон сталості складу: кожна чиста речовина ...

Скачать
84053
5
3

... шаром гасу чи вазелинового масла. При внесенні у вогонь деякі лужноземельні метали дають характерне забарвлення: кальцій - темно-оранжеве, барій та радій - темно-червоне, стронцій - блідо-зелене. 2.2.3 Хімічні властивості Метали ІІА-підгрупи мають загальну електронну формулу зовнішнього енергетичного рівня ns2, на попередньому електронному шарі містять по всім електронів, а атом берилію - ті ...

0 комментариев


Наверх