6. Определение коэффициентов уравнения динамики объекта регулирования

 

Существует два метода определения коэффициентов уравнения динамики объекта регулирования: аналитический и графоаналитический. Первый из них связан с определением конструктивных и теплотехнических характеристик, что порой бывает порой затруднительно в судовых условиях и к тому же требует много времени на обработку полученных данных. Второй метод более прижился в инженерной практике, прост в использовании и экономный во времени. Заключается он в снятии разгонной характеристики по каналу регулирования путём нанесения ступенчатого возмущения на объект регулирования. При съёме разгонной характеристики систему автоматического регулирования размыкают, т. е. объект отсоединяют от регулятора. Возмущение обычно наносится регулирующим органом (РО), в данной курсовой работе роль регулирующего органа выполняет регулирующий топливный клапан, путём изменения его положения на небольшую величину. Эта величина возмущения выбирается так, чтобы изменение выходного параметра не выходило за технологически допустимую величину. В нашем случае величина возмущающего воздействия (ступенчатого открытия топливного клапана) составляет:

Если объект является неустойчивым или нейтральным, то снимают часть разгонной характеристики с допустимыми отклонениями выходной величины. Для регистрации величины отклонения регулируемого параметра используют безинерционные точные измерительные приборы, самописцы, шлейфовые или запоминающие осциллографы. При ручной регистрации разгонной характеристики снимают показания измерительного прибора через равные промежутки времени ∆t. По заданию курсовой работы:

∆t = 13 с.

Для определения постоянной времени объекта регулирования на разгонной характеристике проводим из точки начала координат касательную к кривой. Доведя касательную до уровня (линии) установившегося состояния, получаем точку пересечения. Из этой точки к оси времени проводим перпендикуляр. Расстояние от начала кривой разгонной характеристики до точки пересечения перпендикуляра с осью времени будет постоянной времени, величина которого в нашем варианте имеет вид:

= 42 с.

С разгонной характеристики также определяем

= 0,6

= 0,557

Отсюда по известной формуле определяем коэффициент усиления объекта

С учётом выше написанного запишем типовое уравнение динамики котла как объекта регулирования по давлению пара:

Переходная характеристика объекта регулирования



ВТОРОЙ РАЗДЕЛ

 

1. Выбор регулятора. Принципиальная, функциональная и структурная схемы регулятора. Устройство и принцип действия регулятора и его элементов

Основная регулируемая величина — давление пара, которая характеризует баланс между производимым паром в котле и потребляемым. Нарушение этого баланса сопровождается отклонением давления, которое измеряется регулятором давления пара, изменяющим через исполнительный орган подачу топлива в топку и восстанавливающим тем самым нарушенный тепловой баланс.

Основные требования к регулятору давления пара могут быть сформулированы следующим образом:

-отклонение давление пара в точке отбора импульса на регулятор должно составлять ±0.05 МПа;

-в переходных режимах падение давления пара не должно превышать 10% номинального при изменении нагрузки котла от минимальной до максимальной за период не менее 60с;

-допускается повышение давления пара, не приводящее к подрыву предохранительных клапанов при изменении нагрузки котла от максимальной до минимальной за время не менее 30с;

-давление пара в указанных пределах должно поддерживаться при изменениях расхода пара со скоростью не более 1.5% в секунду (при повышении нагрузки) и 3% в секунду (при снижении нагрузки).

Рис. 2.1.1. Принципиальная схема П-регулятора давления пара

Котел обладает малым самовыравниванием по давлению пара, поэтому регуляторы давления пара должны обязательно иметь стабилизирующие элементы. Для регулирования давления пара обычно применяют 1- и 2-импульсные П-регуляторы, а также ПИ-регуляторы.

Для судов отечественной постройки типичен гидравлический П-регулятор давления пара с жесткой обратной связью (рис.2.1). Регулятор измеряет давление в паропроводе посредством сильфона 2, к которому подведен импульсный трубопровод 1. В установившемся режиме усилие от сильфона уравновешивается натяжениями задающей пружины 4 и пружины обратной связи 6, заслонка водяного усилительного реле 5 (к нему подведена вода под давлением) находится в среднем положении, и поршень ИМ 10 неподвижен. При отклонении давления пара от заданного равновесие нарушается, новое усилие сильфона 2 на рычаг 3 приводит к отклонению заслонки регулирующего реле 5 и подаче воды в одну из полостей ИМ 10; в результате его поршень перемещается и изменяет степень открытия регулирующего подачу топлива клапана 11, оказывая регулирующее воздействие на давление пара в котле. Одновременно шток клапана 11 через рычаг 7 и пружину обратной связи 6 оказывает выключающее воздействие на усилительное реле 5. Дроссельный клапан 8 предназначен для изменения времени ИМ, а клапан 9 — для соединения его полостей при переходе с автоматического регулирования на ручное.

Для незначительного изменения давления в пароводяном коллекторе котла место отбора импульса выбирают в паропроводе за стопорным клапаном котла. При этом давление в пароводяном коллекторе, по сравнению с давлением в месте отбора импульса будет выше на значение снижения давления, вызванного гидравлическими сопротивлениями паропровода от коллектора до места отбора импульса. Для повышения запаса устойчивости АСР необходимо увеличивать неравномерность регулирования DРмах, т. е. наклон статической характеристики, которая определяется в основном жесткостью пружины обратной связи.

Место отбора импульса по длине паропровода следует выбирать таким образом, чтобы гидравлические потери от коллектора до этого места компенсировали неравномерность статической характеристики, обусловленную ЖОС. Для обеспечения запаса устойчивости значение DРмах должно составлять 10—15% номинального регулируемого давления. Так как малые нагрузки котла по сравнению с большими характеризуются меньшим коэффициентом самовыравнивания по давлению пара, то на малых нагрузках для создания достаточного запаса устойчивости целесообразно иметь больший угол наклона статической характеристики.

При своей простоте П-регуляторы давления пара требуют для обеспечения устойчивости относительно большого коэффициента обратной связи. Жесткая обратная связь в них осуществляется по положению топливорегулирующего органа или от расходомера топлива и не учитывает такие факторы, как элементарный состав топлива и его плотность, износы топливорегулирующего органа и распылителей форсунок, вследствие чего при одинаковых нагрузках котла значение сигнала обратной связи может быть различным. Это приводит к отклонению давления пара от заданной статической характеристики.

По приведенной выше принципиальной схеме построим функциональную схему:

 


Рис. 2.1.2. Функциональная схема П-регулятора

ЧЭ – чувствительный элемент;

УУ – усилительное устройство;

ИМ – исполнитель-ный механизм;

ЖОС – жесткая обратная связь

 

Тогда структурная схема примет вид:


*

Рис. 2.1.3. Структурная схема П-регулятора

Передаточные функции звеньев:

- коэффициент усиления чувствительного элемента (ЧЭ),

 - постоянная времени сервомотора (СМ),

- коэффициент усиления ЖОС.



Информация о работе «Автоматизация судовых паротурбинных установок»
Раздел: Промышленность, производство
Количество знаков с пробелами: 51728
Количество таблиц: 5
Количество изображений: 14

Похожие работы

Скачать
55219
0
7

... как перевозка газа под высоким давлением требует стальных танков с большой толщиной стенок. Кроме того, благодаря искусственному охлаждению значительно сокращаются потери газа. Судовые холодильные установки, как и энергетические, в отличие от стационарных имеют ряд особенностей в отношении общего расположения охлаждаемых помещений, размещения оборудования и выбора его типа. При проектировании и ...

Скачать
35486
9
5

... и малогабаритным). Такому требованию наиболее полно отвечает ГТУ, которая к тому же относительно проста в обслуживании. ЗАКЛЮЧЕНИЕ. Из рассмотренных выше материалов видно, что судовые газотурбинные установки, обладая определенными преимуществами перед другими типами, в тоже время обладают очень существенным недостатком-низкой экономичностью. В сочетании с малыми массогабаритными показателями, ...

Скачать
24208
0
2

... утилизации паровой турбиной степень утилизации теплоты может быть существенно увеличена, поскольку дополнительная мощность, получаемая в паровой части установки, не имеет ограничений с точки зрения ее использования. Такая установка (рис. 1) получила название газопаротурбинной (ГПТУ). Рис. 1. Схема газопаротурбинной установки Рабочий процесс в паровой турбине на режимах частичной мощности ...

Скачать
80294
0
5

... до последнего времени была ориентирована на докритическое давление p0=16,3 – 18 МПа. За рубежом на паросиловых тепловых электростанциях редко встречается столь глубокий расчетный вакуум, как на наших ТЭС – при tохл.в=12 0С, хотя это существенно усложняет создание мощных турбин. Только в странах бывшего СССР длительное время эксплуатировались быстроходные пятицилиндровые турбины насыщенного пара ...

0 комментариев


Наверх