6. Метод контроля состояния вводов путем испытания трансформаторного масла

 

Многие повреждения или отклонения от нормального состояния вводов вообще не проявляются при внешнем осмотре. Особенно это относится к начинающимся внутренним повреждениям. Значительная часть внутренних повреждений может быть определена проверкой состояния масла. Изменение его характеристик происходит при увлажнении, загрязнении, попадании воздуха или другого газа; в результате естественного старения, как самого масла, так и бумаги. Испытание трансформаторного масла является распространенным способом проверки состояния вводов.

Основными параметрами, определяющими свойства масла как диэлектрика, являются электрическая прочность, проводимость и диэлектрические потери. Свойства масла также зависят от его газо- и влагосодержания, наличия загрязнений (твердых частиц), содержания кислот и щелочей. Электрическая прочность, характеризуемая пробивным напряжением, меняется при увлажнении и загрязнении масла и может служить диагностическим признаком. Диэлектрические потери в масле определяются в основном его проводимостью и растут по мере накопления в масле продуктов старения и загрязнения. Старение масла определяется окислительными процессами, воздействием электрического поля и конструкционных материалов (металлы, бумага). Наличие продуктов окисления в масле характеризуется его кислотным числом, которое определяется количеством гидроокиси калия (в миллиграммах), затраченного для нейтрализации кислых соединений.

Испытание для проб масла проводится в лабораторных условиях. При этом определяются основные характеристики трансформаторного масла:

- электрическая прочность (пробивное напряжение) - определяется в специальном сосуде с нормированными размерами электродов при приложении напряжения промышленной частоты (ГОСТ 6581-75);

- тангенс угла диэлектрических потерь - (tgδм) определяется при температурах 20°С и 70°С по мостовой схеме Шеринга при напряженности переменного электрического поля, равной 1кВ/мм (ГОСТ 6581-75);

- цвет масла;

-механические примеси - количественная оценка содержания производится путем фильтрования пробы с последующим взвешиванием осадка (ГОСТ 6370-83);

- температура вспышки масла;

- кислотное число масла (ГОСТ 5985-79);

-влагосодержание масла. Эта характеристика особенно важна при диагностике негерметичных вводов. Для определения влагосодержания применяют два метода. Метод, регламентированный ГОСТ 7822-75, основан на взаимодействии гидрида кальция с растворенной водой. Массовая доля воды определяется по объему выделившегося водорода. Этот метод сложен, результаты не всегда воспроизводимы. Предпочтительней кулонометрический метод (ГОСТ 24614-81), основанный на реакции между водой и реактивом Фишера. Реакция идет при прохождении тока между электродами в специальном аппарате.

Приведенные выше показатели нормируются .

Однако, как показывает практика, эти показатели, если они получены в лабораторных условиях, не всегда характеризуют истинное состояние вводов на электрической подстанции. Кроме того, малый объем масла во вводе затрудняет применение этого подхода для оценки его состояния.

 

7. Метод дефектоскопии, основанный на хроматографическом анализе растворенных в масле газов (ХАРГ)

 

Этот метод позволяет выявить дефекты в силовых трансформаторах, а также во вводах на ранней стадии развития.

Лабораторные исследования, проведенные в ряде стран, а также анализ спектра газов в трансформаторах и вводах позволили установить характеристические газы, специфичные для того или иного вида повреждения: водород (Н2), углеводородные газы: метан (СН4); этилен (С2Н4); этан (С2Н6), двуокись углерода (СО2) и окись углерода (СО), ацетилен (С2Н2). Таким образом, по характеристическим газам можно предположить вид развивающегося дефекта. Газоадсорбционная хроматография основана на разделении компонентов газовой смеси при помощи различных адсорбентов - пористых веществ с сильно развитой поверхностью.

Выделенные из масла газы обычно анализируются газовым хроматографом с детектором по теплопроводности.

Структурная схема хроматографической установки приведена на рис.3.4.


Рис.4. Структурная схема хроматографической установки.

1 - баллон с газом-носителем; 2 - устройство для введения пробы (дозатор); 3 - разделительная колонка; 4 - детектор; 5 - регистратор; 6 - устройство для извлечения газа из масла.

Процесс газовой хроматографии состоит из двух этапов: разделение анализируемой смеси на компоненты (качественный анализ) и определение их концентраций (количественный анализ).

Анализируемая смесь газов (проба) вводится в поток газа-носителя, который с постоянной скоростью пропускается через разделительную колонку, содержащую адсорбент. Различия в физико-химических свойствах отдельных газов смеси вызывают различия в скорости их продвижения через адсорбент (пористое вещество с сильно развитой поверхностью). Поэтому на выходе разделительной колонки будут последовательно появляться составляющие анализируемой пробы (в смеси с газом-носителем). Эти составляющие имеют различную теплопроводность, что позволяет, детектором формировать соответствующие сигналы, регистрируемые специальным устройством (обычно самопишущим потенциометром).

Последовательность (время) выхода из разделительной колонки конкретных газов известна (для данных условий анализа). Это дает информацию о составе анализируемой смеси. Для получения количественных данных интегратором определяется площадь пиков хроматограммы, которая на основании данных калибровки приводится к значениям концентрации соответствующих газов. Возможности разделения компонентов газовой смеси определяются характеристиками разделительной колонки: ее наполнителем (адсорбентом), длиной и температурным режимом.

Газ-носитель должен быть инертным по отношению к анализируемым веществам и примененным адсорбентам. Он также должен обеспечивать нормальную работу детектора.

Назначение детектора состоит в преобразовании поступающих на его вход отдельных компонентов газовой смеси в электрические сигналы, которые регистрируются на ленте электронного потенциометра в виде последовательно расположенных импульсов напряжения, получивших название хроматограммы.

Принцип действия часто применяемого детектора-катарометра основан на индикации изменения теплопроводности проходящих сквозь него газов (детектор по теплопроводности). Чувствительные элементы катарометра – резисторы расположены в камерах, по которым проходит поток газов. Два рабочих резистора обтекаются газом, выходящим из разделительной колонки; два других резистора - чистым газом-носителем. Резисторы включены в мостовую измерительную схему и нагреваются протекающим по ним током. При появлении в рабочей камере компонента анализируемой смеси, который изменяет теплопроводность газа в камере, изменяются условия теплопередачи от рабочих резисторов к ее стенке. При этом изменяются сопротивления рабочих резисторов и измерительный мост разбалансируется. Напряжение на диагонали моста, соответствующее концентрации данного компонента смеси, записывается регистратором.

Анализ извлеченной смеси газов производится по методике, определяемой типом примененного хроматографа и составом контролируемых газов. Результаты анализа регистрируются на диаграммной ленте. Состав анализируемой смеси определяется по времени и последовательности появления пиков на хроматограмме. Калибровка производится или эталонной смесью газов с известной концентрацией компонентов, или по одному газу (обычно азоту или воздуху) с соответствующим пересчетом по коэффициентам чувствительности.

Методика диагностики повреждений по хроматографическому анализу растворенных в масле газов является многокритериальной:

- если анализ газов показал состояние "опасности" или "повреждений", чаще проводится хроматографический контроль;

- по характеристическим газам определяют вид развивающего дефекта;

- по отношению концентраций газов этот дефект уточняется;

- по скорости нарастания концентрации газов за определенный промежуток времени оценивается степень опасности развивающегося дефекта и даются рекомендации.

Преимущества метода ХАРГ: позволяет обнаружить довольно широкий класс дефектов, высокая вероятность совпадения прогнозируемого и фактического дефектов. В настоящее время применяют ХАРГ вместе с измерением tgδ изоляции как основные методы диагностики вводов в процессе эксплуатации.

Недостатки: отбор масла под рабочим напряжением вводов невозможен вследствие особенностей конструкций их маслоотборных устройств. Необходимость частого отбора пробы масла неприемлема, особенно для герметичных конструкций.

Малый объем масла во вводах 110-220 кВ существенно затрудняет регулярный контроль путем отбора и анализа проб масла. Полная отдача сильфонов, компенсирующих температурное изменение объема масла в конструкциях серийных вводов 110-150 кВ, составляет 1,5-2,0 л, так что после отбора пробы (0,5 л) возникает необходимость последующего трудоемкого долива масла и соответствующего дорогостоящего приспособления. Характеристика пробы масла не всегда соответствует его фактическому состоянию в оборудовании, поскольку часть примесей может не попадать в пробу.

Методика выделения газов существенно влияет на точность определения концентраций контролируемых газов. Расхождения в методике выделения нередко являются причиной значительных расхождений в результатах анализа, проведенных в разных лабораториях. Кроме того, газосодержание масла конкретного ввода и скорость его изменения зависят от большого количества факторов. К ним относятся различия конструктивных материалов, режимы нагрузки, класс напряжения и т.п. Поэтому к граничным нормам следует относиться как к величине, отражающей компромисс между желанием выявить дефекты и затратами на контроль. Высокая чувствительность метода ХАРГ увеличивает вероятность ложной отбраковки, т.к. с учетом сравнительно небольшого объема масла во вводе, позволяет обнаружить дефект, который из-за малого его развития может и не приводить к аварийному повреждению ввода.

Эффективность контроля при этом в значительной мере определяется опытом персонала. Так, в частности, нормальное состояние ввода можно констатировать и в случае превышения нормы концентрации ряда газов, если скорости изменения этих концентраций малы. Однако при скорости изменения концентрации, превышающей нормированную предельную, малое абсолютное превышение концентрации не может быть признаком отсутствия дефекта.

Необходимо также отметить о сложности и высокой стоимости хроматогра-фической установки и трудности ее наладки и освоения.

 


Информация о работе «Оценка технического состояния трансформаторных вводов на основе нечетких алгоритмов»
Раздел: Физика
Количество знаков с пробелами: 64023
Количество таблиц: 4
Количество изображений: 17

Похожие работы

Скачать
73935
5
19

... имеет более высокие показатели качества, чем существующие аналоги, а именно она обладает более высокой степенью точности, экономичности и быстродействия. Так же проектируемая система управления подъемно-транспортным механизмом позволяет существенно обезопасить производство и труд рабочих, что в свою очередь непременно скажется на экономических показателях. Данная разработка снизит затраты на ...

Скачать
227043
58
10

... Кабінету Міністрів України. В шкідливих умовах праці знаходяться близько 400 чоловік, з них 30 жінок. Висновки Тема даної дипломної роботи: „Розробка заходів щодо удосконалення антикризового управління підприємством (на прикладі КП ”Втп ”ВОДА”)”. Проведені в роботі дослідження дозволяють зробити наступні висновки. В першому теоретичному розділі повністю розкрита сутність обраної теми, досліджено ...

Скачать
137602
41
21

... 400/400 ПН-2-250/200 ПН-2-250/200 ПН-2-100/100 ПН-2-250/150 ПН-2-250/150 ПН-2-250/150 ПН-2-250/150 13 Технико-экономическое сравнение двух вариантов схемы электроснабжения микрорайона   Выбор вариантов схемы электроснабжения производится на основе сопоставления двух вариантов: I – кольцевая схема (рисунок 8) и II - двухлучевая магистральная схема (рисунок 9). Расчет производится по ...

Скачать
174460
0
0

... время Китай и Россия еще находятся в процессе преобразований, перед ними стоит общая задача углубления реформ и развития экономики. Обе страны являются постоянными членами СБ ООН и мировыми державами. Вместе с этим мы должны прилагать целенаправленные усилия для дальнейшего развития китайско-российских отношений. Следует развивать сотрудничество в экономической и технической сфере. Здесь Китаю и ...

0 комментариев


Наверх