2. Автоматизация котельных установок

Отопительные и отопительно-производственные котельные занимают одно из ведущих мест среди потребителей топливных ресурсов, причем их доля в общем энергетическом балансе страны составляет около 50%.

В настоящее время в городах эксплуатируются более 120 тыс. котельных, и в перспективе они будут иметь немаловажное значение. Индустриализация сельского строительства также требует значительного количества котельных малой мощности.

Техническая эксплуатация котельных «малой энергетики» связана с трудоемкими процессами. Для ее совершенствования требуется автоматизация и механизация основных технологических процессов. Важнейшей задачей автоматизации и механизации является обеспечение энергетического и материального баланса установки при оптимальном КПД, минимальных потреблении топливно-энергетических ресурсов, загрязнении окружающей среды, при экономичной и безопасной работе на любых нагрузках.

История автоматизации началась именно с регулирования паровых котлов. Ее современное состояние позволяет, увеличив экономичность котлоагрегатов, повысить безопасность, надежность и точность работы оборудования, обеспечить снижение численности обслуживающего персонала, облегчение его труда.

Наибольшая эффективность автоматической эксплуатации котельных предполагается при полной и комплексной автоматизации устройств основного и вспомогательного оборудования. Как известно, к первому относится сам котлоагрегат, дымососы и вентиляторы, ко второму – насосно-деаэраторная установка, химводоочистка, теплофикационная установка, станция перекачки конденсата, ГРС, склад мазута (угля) и топливоподача.

Уровень автоматизации котельных зависит от следующих основных технических факторов:

– назначения котла. По виду и параметрам энергоносителя котлы делятся на паровые, водогрейные, с высокотемпературным органическим теплоносителем (ВОТ). В качестве ВОТ применяются дифенильная смесь (ДФС), дитолилметан (ДТН) и дикулилметан (ДКМ) с температурой не более 310…380°С. Сюда входят стационарные и передвижные котлы, котлы-боилеры и котлы-утилизаторы;

– конструкции котла и его оборудования (барабанный, прямоточный, чугунный секционный с наддувом, микрокотел), вида тяги и т.п.;

– вида топлива (твердое, жидкое, газообразное, пылевидное, комбинированное (газомазутное)) и типа топливосжигающего устройства (ТСУ);

– вида потребителя (производственный, отопительный, индивидуальный и т.п.);

– числа котлов в котельной.

При составлении схемы автоматизации предусматривают основные подсистемы автоматического регулирования, технологической защиты, дистанционного управления, теплотехнического контроля, технологической блокировки и сигнализации.

Автоматическое регулирование обеспечивает нормальный режим работы котла (материальный и энергетический баланс) независимо от нагрузки. Дистанционно управляют вспомогательными механизмами, а также розжигом котла (иногда на расстоянии до 20 км и более). Технологические защиты предотвращают возникновение аварийных режимов котлоагрегата и вспомогательного оборудования. С помощью приборов теплотехнического контроля ведут непрерывное наблюдение за процессами, протекающими в котельной. Технологические блокировки обеспечивают заданную последовательность операций управления, исключая возможность неправильных операций, взаимодействуют с технологической защитой. Звуковая и световая сигнализация информирует обслуживающий персонал о состоянии оборудования, предупреждает о возникновении аварийной ситуации. Объем автоматизации зависит от вида котлоагрегата, схемы котельной и определяется СНиП II-35–76.

3. Автоматизация парогенераторов

автоматизация теплогенератор котельный установка

Технологический процесс получения пара в барабанном парогенераторе (паровом котле) общего назначения обеспечивается АСР питания (регулирования уровня воды в барабане), АСР горения и нагрузки (регулирования давления пара, воздуха и разрежения в. топке) и АСР перегрева пара и продувки. Каждая АСР имеет свои особенности.

Уровень воды в барабане котла относится к числу главных регулируемых величин, определяющих безопасность и надежность работы самого агрегата и связанных с ним установок. Изменение уровня происходит вследствие увеличения или уменьшения расхода пара, изменения тепловой нагрузки топки и давления пара. Уровень должен поддерживаться в пределах допустимого, выход за эти пределы (перепитка и спуск воды) приводит к забросу воды в экономайзер, пароперегреватель и другие части котла или к обнажению и пережогу экранных трубок – к выходу котла из строя.

При плавных нагрузках, почти статических режимах задачу регулирования успешно решала «автоматика по Ползунову» – поплавковый датчик изменял подачу питательной воды перемещением клапана или воздействием на питательный насос. С увеличением мощности котлов, появлением большого числа потребителей с переменными, резко изменяющимися нагрузками обнаружилась одна особенность эксплуатации барабанных котлов, заставившая изменить принцип регулирования.

При резком отборе пара, т.е. при D^>D0, падает давление в барабане р<§Сро, что приводит при той же тепловой нагрузке к вскипанию пароводяной смеси, явлению «набухания». Это вызывает подъем уровня Н> >#о, на что поплавковый регулятор реагирует уменьшением притока воды GnB<G0, причем в момент большого потребления пара, когда необходимо подпитывать котел. Происходит реверс обратной связи: вместо отрицательной образуется положительная, и «набухание» становится тем больше, чем сильнее экранирован котел и меньше давление пара. К тому же объект не обладает самовыравниванием и имеет емкостное запаздывание. Динамическая характеристика с кривыми: астатической Hx(t) – от разности расходов пара и воды, статической – от «набухания» и результирующей H(t) представлена на рис. 18.1, а. На рис. 18.1, б показан трех- импульсный (есть и двухимпульсный) регулятор питания LC с сигналом по уровню и дополнительными – расходу пара и поступлению (давлению) питательной воды в котел. Регуляторы этого типа широко распространены в автоматике современных котлов благодаря стабильному поддержанию уровня.

Описание: C:\Users\Ася\Documents\media\image1.png

Таким образом, импульс по давлению пара определяет теплопроизводительность котла и используется для изменения подачи топлива.

Вместе с топливом должен быть подан необходимый для горения воздух, соотношение между ними показывает коэффициент избытка воздуха.

Соотношение «топливо–воздух» можно регулировать ло двум схемам: изменять расход топлива, соответственно меняя расход воздуха, и наоборот. Опыт подтверждает большую экономичность второго способа. При сжигании газа в инжекционных горелках используется первая схема. Существует и схема «пар–воздух», при которой на регулятор воздуха подается импульс по расходу пара. Ее применяют для котлов, работающих с постоянной нагрузкой, и при частой смене топлива, например в газомазутных котлах. По такой схеме может использоваться корректирующий импульс по расходу топлива, что повышает эффективность процесса его сгорания.

Материальный баланс «топливо + воздух = дымовой газ» обеспечивается соответствующим разрежением в топке, которое регулируется изменением направляющим аппаратом подачи дымососов или их частотой вращения. Таким образом, в автоматику горения включают три основных регулятора: топлива (нагрузки), воздуха (соотношения) и тяги. Иногда в роли регулятора нагрузки выступает регулятор воздуха.

При параллельной работе блока котлов на общую магистраль заданное давление в ней поддерживает главный, или ведущий, регулятор, который управляет нагрузкой всех котлов.

Автоматическое регулирование перегрева пара производится из условий надежности совместной работы котла и турбины одним из трех способов – паровым, газовым и парогазовым. Чаще используется паровой способ, когда в поверхностном переохладителе пар охлаждается питательной водой. Газовый способ основан на изменении теплоотдачи пароперегревателя перепуском дымовых газов, минуя его, парогазовый – на комбинации указанных способов.

Развернутая схема автоматизации парогенератора с большим количеством коммуникаций и линий связи достаточно сложна, поэтому на рис. 18.2 приведена упрощенная схема автоматизации газомазугного котла с нанесением блоков регулирования основными процессами.

Ведущий регулятор VII по импульсу рк давления пара в общекотельном коллекторе передает команду регулятору тепловой мощности III, изменяющему подачу топлива. Одновременно регулятор топлива получает информацию о расходе пара от датчика FT(1) и от дифференциатора PC – сведения о давлении в самом котле, которое может быть отличным от рк.

Регулятор воздуха IV получает сигнал от ведущего регулятора вместе с сигналами FT(3) по расходу воздуха Вз, топлива Т и по содержанию кислорода 02 в дымовых газах. При изменении режима регулятор приводит в действие направляющий аппарат дутьевого вентилятора ДВ. Регулятор питания VI изменяет подачу питательной воды в зависимости от ее расхода Gn.B, расхода пара D и уровня в барабане Н.

Регулятор тяги V увеличивает подачу дымососа ДС воздействием на его направляющий аппарат при изменении разрежения (–р) и синхронизирующего импульса от регулятора воздуха. Регулятор перегрева пара VIII изменяет температуру пара 6П. п впрыском питательной воды в пароперегреватель ПП по суммарному сигналу о температурах пара 6Пц и 6К.

Регуляторы давления топлива I и его температуры II управляют байпасным клапаном топливного насоса ТН и подачей теплоносителя в топливоподогреватель ТП, обеспечивая параметры рт и 6Т, необходимые для нормальной работы топливосжигающих устройств.

Описание: C:\Users\Ася\Documents\media\image2.png

Для котлов, работающих на твердом топливе, регулятор подачи топлива действует на плунжер пневмозабрасывателя (топки ПМЗ–ЛЦР, ПМЗ–РПК и др.), кроме топок с цепными решетками типа ЧЦР, не позволяющими плавно изменять подачу.

Автоматическое регулирование прямоточных котлов практически не отличается от барабанных. Исключением является отсутствие регулятора уровня в барабане. Однако предусматриваются обязательная синхронизация между подачей топлива и питательной воды и регулятор температуры пара. Ввиду высокой напряженности тепловых и гидроаэродинамических процессов большое внимание уделяется технологическим защитам, сигнализации и блокировке.

В аварийных ситуациях устройства технологической защиты должны либо остановить котел, либо перевести его на режим пониженной нагрузки или осуществить некоторые локальные операции. Затем выявляется и ликвидируется причина нарушения, повторный пуск в действие осуществляется дежурным персоналом.

Останов котла необходимо производить в следующих случаях: снижения температуры пара, падения давления топлива, погасания факела в топке, перепитки котла выше 2-го предела, упуска воды, останова обоих дымососов или вентиляторов. Управляющее воздействие – останов дутьевых вентиляторов и прекращение подачи топлива, дымососы работают для вентиляции газоходов.

Переводить котел на долевой режим (около 50% нагрузки) необходимо при повышении давления и температуры пара, останове одного дымососа или вентилятора. Управляющее воздействие – отключение половины ТСУ и блокировка регулятора топлива в сторону увеличения подачи. Локальными операциями могут быть: включение средств пожаротушения при загорании сажи, открытие рабочих и контрольных предохранительных клапанов при повышении давления пара на выходе и в барабане и ряд других воздействий.

При остановке регенеративных воздухоподогревателей котел останавливают или переводят на долевой режим. Останов прямоточных котлов производится также автоматической защитой при прекращении подачи питательной воды. Особое внимание уделяется предельному регулированию давления.


Список литературы

1.  Благовещенская М.М. Автоматика и автоматизация пищевых производств. – М.: Агропромиздат, 1991. – 239 с.

2.  Бородин И.Ф., Судник Ю.А. Автоматизация технологических процессов. – М.:КолосС, 2003. – 344 с.: ил. – (Учебники и учеб. пособия для студентов высш. учеб. заведений).

3.  Загинайлов В.И., Шеповалова Л.Н. Основы автоматики. – М.: Колос, 2001.

4.  Шавров А.И., Коломиец А.П. Автоматика. – М.: Колос, 2000.


Информация о работе «Автоматизация котельных установок и парогенераторов»
Раздел: Физика
Количество знаков с пробелами: 21865
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
121703
23
4

... средств автоматизации. 61 11. Экономический расчет. 65 12. Безопасность и экологичность работы.. 87 Заключение. 95 Conclusion. 96 Литература. 97 Реферат Дипломный проект на тему «Автоматизация котельной установки производства мономеров» состоит из 81 страницы. В ней содержится 2 рисунка, 8 таблиц и приложение. Для составления этой работы было использовано 20 источников литературы, ...

Скачать
86497
13
11

... і розрахунок основного обладнання 4.1 Характеристика котлів марки ДЕ-4–14ГМ У зв'язку з розширенням котельні виникає потреба вибору котельного агрегату. Зважаючи на те, що котли ДЕ-4–14ГМ мають високий ККД та добре зарекомендували себе в роботі, а також підходять для розширення своєю потужністю, обираємо саме цей котел. Газомазутні парові вертикальні водотрубні котли типу ДЕ призначені для ...

Скачать
147822
34
94

... и сигнализация нарушений и аварийных ситуаций с их протоколированием; Возможность дистанционного управления регулирующими исполнительными механизмами; Надежность. Для более эффективного функционирования системы автоматизации можно предъявить к Scada-пакету следующие требования: Контроль над технологическим процессом, состояние технологического оборудования и управление процессами и ...

Скачать
41343
0
2

... мощности воздухоподогреватели обычно отсутствуют, и холодный воздух в топку подается или вентилятором, или за счет разрежения в топке, создаваемого дымовой трубой. Котельные установки оборудуют водоподготовительными устройствами (на схеме не показаны), контрольно-измерительными приборами и соответствующими средствами автоматизации, что обеспечивает их бесперебойную и надежную эксплуатацию. ...

0 комментариев


Наверх