Принятие решения на основе переработанной информации и выработка рационального управляющего воздействия

39029
знаков
1
таблица
5
изображений

3. Принятие решения на основе переработанной информации и выработка рационального управляющего воздействия.

4. Передача управляющего воздействия исполнительным органам.

Важнейшая семантическая характеристика информационного сигнала - его воспринимаемость приемником. Передаваемые данные могут быть информационным сигналом только в том случае, если в воспринимающей системе управления они будут реализованы.

Анализ изложенных вопросов представляется неотъемлемой частью процесса разработки системы управления технологией и производством в целом. За последние годы развивается тенденция аналитического подхода к проблеме управления производством. Это стало возможным благодаря широкому применению вычислительной техники. Такой подход позволяет производственникам глубже понять внутренний механизм производственных процессов и эффективнее управлять производственной системой, а также направить силы на сокращение производственных выбросов в окружающую среду.

Коксование углей, широко распространённый технологический процесс, технологический процесс, который состоит из стадий: подготовка к коксованию, собственно коксование, улавливание и переработка летучих продуктов.

Подготовка включает обогащение (для удаления минеральных примесей) низкосернистых, малозольных, коксующихся углей, измельчение до зёрен размером около 3 мм, смешение нескольких сортов угля, сушка полученной т. н. «шихты». Шихта — смесь измельчённых каменных углей различных марок, служащая сырьём при производстве кокса.

Для коксования шихту загружают в щелевидную коксовую печь (ширина 400—450 мм, объём 30-40 м3). Каналы боковых простенков печей, выложенных огнеупорным кирпичом, обогреваются продуктами сгорания газов: коксового (чаще всего), доменного, генераторного, их смесей и др. Генераторный газ (воздушный газ) — газовая смесь, содержащая (в среднем, об. %) CO — 25, N2 — 70, CO2 — 4 и небольшие примеси других газов.

Получают генераторный газ путём пропускания воздуха над раскалённым каменным углём или коксом в специальных печах — газогенераторах (КПД процесса 65-70%). Выход из кокса 4,65 м³/кг.

Теплотворная способность генераторного газа составляет 800—1000 ккал на кубометр, причём замена воздуха на кислород при его получении ведёт к значительному увеличению доли монооксида углерода и, соответственно, к увеличению теплотворной способности.

Генераторный газ применяется как топливо в металлургической, стекольной, керамической промышленности, для двигателей внутреннего сгорания, а так же для синтеза аммиака.

Продолжительность нагрева составляет 14-16 часов. Температура процесса — 900—1050 °C. Полученный кокс (75-78 % от массы исходного угля) в виде т. н. «коксового пирога» (спёкшейся в пласт массы) — выталкивается специальными машинами («коксовыталкивателями») в железнодорожные вагоны, в которых охлаждается («тушится») водой или инертным газом (азотом).

Парогазовая смесь выделяющихся летучих продуктов (до 25 % от массы угля) отводится через газосборник для улавливания и переработки. Для разделения летучие продукты охлаждают впрыскиванием распыленной воды (от 70 °C до 80 °C) — при этом из паровой фазы выделяется большая часть смол, дальнейшее охлаждение парогазовой смеси проводят в кожухотрубчатых холодильниках (до 25-35 °С). Конденсаты объединяют и отстаиванием выделяют надсмольную воду и каменноугольную смолу. Затем сырой коксовый газ последовательно очищают от NH3 и H2S, промывают поглотительным маслом (для улавливания сырого бензола и фенола), серной кислотой (для улавливания пиридиновых оснований). Очищенный коксовый газ (14-15 % от массы угля) используют в качестве топлива для обогрева батареи коксовых печей и для других целей.

Из надсмольной воды (9-12 % от массы угля) отгонкой с паром выделяют: NH3 (в виде концентрированной аммиачной воды), фенолы, пиридиновые основания. Очищенную воду после разбавления технической водой направляют на тушение кокса или на биологическую очистку сточных вод на очистные сооружения.

Каменноугольная смола (3-4 % от массы угля) является сложной смесью органических веществ (в настоящее время идентифицировано только ~60 % компонентов смолы — более 500 веществ). Смолу методом ректификации подвергают разделению на фракции: нафталиновую, поглотительную, антраценовую и каменноугольный пёк. Из них, в свою очередь, кристаллизацией, фильтрованием, прессованием и химической очисткой выделяют: нафталин, антрацен, фенантрен, фенолы и каменноугольные масла.

Процесс коксования длится около 14 часов. После того как он закончится, образовавшийся кокс-«коксовый пирог»-выгружают из камеры в вагон и затем гасят водой или инертным газом; в камеру загружают новую партию угля, и процесс коксования начинается снова. Коксование угля – периодический процесс.

Основные продукты: кокс-96-98% углерода; коксовый газ-60% водорода, 25% метана, 7% оксида углерода (II) и др. Побочные продукты: каменноугольная смола (бензол, толуол), аммиак (из коксового газа) и др.

4.  Почему охрана атмосферного воздуха считается ключевой проблемой оздоровления окружающей среды?

 

Охрана атмосферного воздуха – ключевая проблема оздоровления окружающей природной среды. Атмосферный воздух занимает особое положение среди других компонентов биосферы. Значение его для всего живого на Земле невозможно переоценить. Человек может находиться без пищи пять недель, без воды – пять дней, а без воздуха всего лишь пять минут. При этом воздух должен иметь определенную чистоту и любое отклонение от нормы опасно для здоровья.

Вопрос о воздействии человека на атмосферу находится в центре внимания специалистов и экологов всего мира. И это не случайно, так как крупнейшие глобальные экологические проблемы современности - «парниковый эффект», нарушение озонового слоя, выпадение кислотных дождей, связаны именно с антропогенным загрязнением атмосферы.

Атмосферный воздух выполняет и сложнейшую защитную экологическую функцию, предохраняя Землю от абсолютно холодного Космоса и потока солнечных излучений. В атмосфере идут глобальные метеорологические процессы, формируются климат и погода, задерживается масса метеоритов.

Атмосфера обладает способностью к самоочищению. Оно происходит при вымывании аэрозолей из атмосферы осадками, турбулентном перемешивании приземного слоя воздуха, отложении загрязненных веществ на поверхности земли и т. д. Однако в современных условиях возможности природных систем самоочищения атмосферы серьезно подорваны. Под массированным натиском антропогенных загрязнений в атмосфере стали проявляться весьма нежелательные экологические последствия, в том числе и глобального характера. По этой причине атмосферный воздух уже не в полной мере выполняет свои защитные, терморегулирующие и жизнеобеспечивающие экологические функции.

Загрязнение атмосферного воздуха воздействует на здоровье человека и на окружающую природную среду различными способами -- от прямой и немедленной угрозы (смог и др.) до медленного и постепенного разрушения различных систем жизнеобеспечения организма. Во многих случаях загрязнение воздушной среды нарушает структурные компоненты экосистемы до такой степени, что регуляторные процессы не в состоянии вернуть их в первоначальное состояние и в результате механизм гомеостаза не срабатывает.

Основными условиями оздоровления окружающей среды, улучшения ее качества мы считаем совершенствование природоохранного законодательства и всей нормативной базы в области природопользования и охраны окружающей среды, внедрение преимущественно экономических методов управления в этой сфере, проведение государственной и общественной экологической экспертизы проектов на строительство и реконструкцию производственных и иных объектов, осуществление которых может повлиять на природную среду, повышение экологической грамотности природопользователей и экологической культуры населения, усиление контроля в области природопользования, охраны окружающей среды.


Список использованной литературы

 

1.  Амелин А.Г., Технология серной кислоты, 2 изд., М., 1983. – с. 82

2.  Васильев Б.Т., Отвагина М.И., Технология серной кислоты, М., 1985.—с. 103Голицин А.Н. Основы промышленной экологии. Учебник. – М.: Академа, 2002. – с. 175-186

3.  Логинов В. Ф. Основы экологии и природопользования. Полоцк: ПГУ, 1998. – с. 116

4.  Лейбович Р.Е. Технология коксохимического производства. М.: Металлургия, 1966. – с. 236с.

5.  Степановских А.С. Прикладная экология: охрана окружающей среды: Учебник для вузов. - М. Юнити-Дана, 2003. – с. 113-116, с. 501

6.  Сысков К. И., Королёв Ю. Г. Коксохимическое производство. М., «Высшая школа», 1969.—с. 62

7.  Ткачв В.С., Остапенко М.А. Оборудование коксохимических заводов. М.: Металлургия, 1983 – с. 136-137с.

8.  Челноков А. А., Ющенко Л. Ф. Основы промышленной экологии. Минск: Вышэйш. шк., 2001. – с. 173

9.  Экология для технических вузов. Под ред. В.М. Гарина. – Ростов н/д: Феникс, 2001. – с. 193

10.  Шимова О.С., Соколовский Н.К. Основы экологии и экономика природопользования. – Мн.: БГЭУ, 2001. – с. 381


Информация о работе «Экология современного производства»
Раздел: Экология
Количество знаков с пробелами: 39029
Количество таблиц: 1
Количество изображений: 5

Похожие работы

Скачать
64850
0
0

... – ростовщические конторы, которым главное – извлечение денежной прибыли вне зависимости от того, какие последствия для экономики и страны это повлечет. Решению проблем экологии сельскохозяйственного производства могли бы помочь сезонные кредиты. Чтобы помочь крестьянину, российское правительство в каждом бюджете предусматривает погашение части процентной ставки по коммерческим кредитам для ...

Скачать
14175
0
0

... и общей целью – предельно сократить влияние промышленной деятельности на процессы кругооборота веществ в природе и загрязнения окружающей среды. Одновременно с такой инженерной деятельностью возникает и проблема ее оценки, составляющая второе направление практической деятельности. Для этого надо научиться выделять значимые параметры окружающей среды, разработать способы их измерений и создать ...

Скачать
77331
3
0

... методы защиты природной среды от загрязнений; 2)  использование возобновляемых источников энергии (солнечного излучения, внутренней энергии Земли, энергии ветра, морских приливов и отливов). При рассмотрении вопросов экологии ученики должны получить представление и о том, что проблема охраны природы не может быть решена только на основе достижений естественных наук и техники, изменений ...

Скачать
32781
2
1

... Фактического состояния природной среды ·      Влияния факторов антропогенного воздействия ·      Допустимости изменений и нагрузок на среду в целом ·      Прогнозируемого состояния природной среды Экологический мониторинг осуществляется на основе следующих принципов:1) Гласность мероприятий, проводимых в области государственного экологического мониторинга, с учетом соблюдения требований ...

0 комментариев


Наверх