1.5 Требования к производительности мультисервисного узла доступа

Мультисервисный узел доступа должен обслуживать трафик от всех трёх групп пользователей. Кроме того, именно узел доступа должен обеспечить поддержку качества обслуживания путем приоритезации трафика, которая должна осуществляться независимо от используемой технологии транспортной сети доступа.

Суммарное число пакетов, которое должен обработать мультисервисный узел доступа, будет равно:

NjΣj = N1j + N2j + N3j = n1j· t1·f1·p1·N + (n1j· t2· f2· p2· N + p2· N · V2/hj) +

(2.12)

 
+ (n1j· t3·f3·p3· N + p3·N ·V3/hj + p3· N · n3j · t3_В)

Учитывая, что:

t1 = t2 = t3 = t– средняя длительность разговора в секундах;

f3 = f2 = f1 = f – число вызовов в ЧНН;

получим

(2.13)

 
NjΣj = n1j · t· f ·N · (p1 + p2 + p3) + N/hj · (p2·V2 + p3·V3) + p3· N · n3j · t3В

Учитывая, что p1 + p2 + p3 = 1, получим

(2.14)

 

NΣj = N · (n1j· t· f + ( p2·V2 + p3·V3)/hj) + p3· N · n3j· t3_В

NΣj = 258370000 G711u

NΣj = 410730000 G726-32

Среднее число пакетов в секунду рассчитывается для двух выбранных кодеков и равно

(2.15)

 

NΣ_секj = NΣj/3600

NΣ_секj =258370000/3600=71769,4 G711u

NΣ_секj =410730000/3600=114092 G726-32

Данные показатели позволяют оценить требования к производительности маршрутизатора, агрегирующего трафик мультисервисной сети доступа NGN. Анализ Приложения А показывает, что выбор такого маршрутизатора осуществляется из весьма ограниченного количества вариантов.

Анализируется как и какие группы сети больше всего загружают систему для рассчитываемых длин пакетов. Для этого формируется таблица 5 и строится диаграмма рисунок 1.

Таблица 5 - количество передаваемых пакетов в сек для трех групп пользователей

Количество передаваемых пакетов в сек
G.711u G.726-32

1 группа (p1),%

68250·103

68250·103

2 группа (p2) ,%

112140∙103

192780∙103

3 группа (p3) ,%

77980·103

149700∙103

Рисунок 1 – Доли передаваемых пакетов тремя группами

Вывод о загрузке системы пользователями трех групп.

Из графика видно, что наибольший передаваемый трафик идет на 2-ую группу при кодеке G.711u и G.726-32 от общего числа пользователей. Пользователи обычной телефонии, при ее преобладающем количестве, загружают систему меньше всех.


Задание 2

а) рассчитать среднее время задержки пакета в сети доступа

б) рассчитать интенсивность обслуживания пакета при норме задержки  = 5 мс для двух типов кодеков.

в) построить зависимость максимальной величины для средней длительности обслуживания одного пакета от среднего времени задержки в сети доступа.

г) определить коэффициент использования системы для случаев с различными кодеками.

д) построить зависимости при помощи прикладной программы MathCad.

ж) сделать выводы по задачам 1 и 2.

Требования к полосе пропускания определяются гарантиями качества обслуживания, предоставляемыми оператором пользователю. Параметры QoS описаны в рекомендации ITU Y.1541. В частности, задержка распространения из конца в конец при передачи речи не должна превышать 100 мс, а вероятность превышения задержки порога в 50 мс не должна превосходить 0,001, т.е.

, мс

p{tp > 50 мс} ≤ 0.001

Задержка из конца в конец складывается из следующих составляющих:

(2.16)

 

tp = tпакет + tад + tcore + tад + tбуф


где tp – время передачи пакета из конца в конец;

tпакет – время пакетизации (зависит от типа трафика и кодека);

tад – время задержки при транспортировке в сети доступа;

tcore – время задержки при распространении в транзитной сети;

tбуф – время задержки в приёмном буфере.

Допустим, что задержка сети доступа не должна превышать 5 мс. Время обработки заголовка IP-пакета близко к постоянному. Распределение интервалов между поступлениями пакетов соответствует экспоненциальному закону. Поэтому для описания процесса, происходящего на агрегирующем маршрутизаторе, можно воспользоваться моделью M/G/1.

Для данной модели известна формула, определяющая среднее время вызова в системе (формула Полячека – Хинчина) /9/.

(2.17)

 

где j – средняя длительность обслуживания одного пакета;

 – квадрат коэффициента вариации, 0,2;

j– параметр потока, из первой задачи Nå_секj ;

j – среднее время задержки пакета в сети доступа,  = 0,005 с.

Из формулы (2.17) следует зависимость максимальной величины для средней длительности обслуживания одного пакета от среднего времени задержки в сети доступа.


(2.18)

 

Построим данные зависимости при помощи прикладной программы MathCad.

Рисунок 2 - Зависимость максимальной величины для средней длительности обслуживания одного пакета от среднего времени задержки в сети доступа для кодека G.711u

 


Рисунок 3 - Зависимость максимальной величины для средней длительности обслуживания одного пакета от среднего времени задержки в сети доступа для кодека G.726-32

Интенсивность обслуживания связана со средним временем задержки пакета в сети доступа обратно пропорционально:

(2.19)

 

Время tj должно выбираться как минимальное из двух возможных значений. Первое значение – величина, полученная из последней формулы. Второе значение – та величина, которая определяется из условия ограничения загрузки системы – r. Обычно эта величина не должна превышать 0,5.

При среднем значении задержки в сети доступа 5 мс коэффициент использования равен:

(2.20)

 

Рассчитать коэффициент использования для случаев с различными кодеками.

При таком высоком использовании малейшие флуктуации параметров могут привести к нестабильной работе системы. Определим параметры системы при её использовании на 50%. Средняя длительность обслуживания будет равна

(2.21)

 

Определим интенсивность обслуживания при этом

(2.22)

 

Задержка в сети доступа рассчитывается по формуле:


(2.23)

 
, (секунд)

Рассчитывать вероятность s(t)=при известных λ и τ нецелесообразно, т.к. в Y.1541 вероятность P{t>50мс} < 0.001 определена для передачи из конца в конец.

При известном среднем размере пакета hj определить требуемую полосу пропускания

jj = βj×hj (бит/с)

jj =71890×163,84×8=94227661 бит/с=89,863 Мбит/с

jj =114200×81,92×8=74842112 бит/с=71,375 Мбит/с

Сравним полученные результаты (рисунок 4.)

Рисунок 4 – Отображения результатов расчета: требуемая полоса пропускания

Из графика видно, что для передачи одной и той же информации, то есть одного объема при использовании услуги Triple Play, необходима различная полоса пропускания. Предположим, что в структурном составе абонентов отсутствуют группы пользователей использующие видео, т.е. p » p2+p2. При этом в вышеприведённом анализе следует опустить расчёт числа пакетов, возникающих при использовании сервисов высокоскоростной передачи данных и видеоуслуг.

Число генерирующих пакетов, возникающих в ЧНН, будет равно

где Ntel – число пакетов телефонии, генерируемое всеми пользователямив час наибольшей нагрузки;

Nint – число пакетов интернета, генерируемое второй группой пользователей в час наибольшей нагрузки

p – доля пользователей группы 2 в общей структуре абонентов

nj – число пакетов, генерируемых в секунду одним абонентом при использовании кодека G.711u;

t– средняя длительность разговора в секундах;

f – число вызовов в час наибольшей нагрузки;

N – общее число пользователей.

Число пакетов в секунду:

Среднее время обслуживания одного пакета при норме задержки 5 мс:

Коэффициент использования:

При использовании системы на 50%:


Требуемая пропускная способность:

φj = βj×hj , (бит/с)

φj = 103700163,848=135900000 бит/с=129,625 Мбит/с

φj = 14890081,928=97580000 бит/с=93,063 Мбит/с

Сравним полученные результаты (рисунок 5)

Рисунок 5 – Отображения результатов расчета: требуемая полоса пропускания

Из графика видно, что для передачи информации одного объема, необходима различная полоса пропускания, в данном случае при использовании кодека G.711u с длиной пакета 203,84 байт необходима большая полоса пропускания, чем при использовании кодека G.726-32 с длиной пакета 121,92 байт.

Построенная модель рассчитывает параметры сети, а именно время и интенсивность обслуживания одного ip пакета определенной длины, от времени задержки в сети доступа.


Задание 3

 

а) Провести расчет математической модели эффекта туннелирования в MPLS , применив MATHCAD или другую программу;

б) Рассчитать времени пребывания пакета в туннеле из N узлов V1 (N);

в) рассчитать время пребывания пакета в LSP- пути без туннеля V2(N);

г) на основе результатов расчета сравнить различные варианты и сделать выводы о возможности организации туннеля между первым узлом и узлом N.

Исходные данные для расчета приведены в таблице 6.

Таблица 6- Данные к расчету

Первая буква фамилии Д
число маршрутиза-торов N 25
Посл.цифра № зач.кн 3

ρ1

0,70

ρ2

0,80

ρ3

0,90
Предпоследняя цифра номера зач. Книжки 1

image030, с-1

800
m 1,03

Выполнение задания 3

Эффект от организации туннеля, равен разности V1 и V2. При этих предположениях предлагается следующий алгоритм:

Шаг 1. Полагается N = М.

Шаг 2. Для n = 1,2, ..., N определяются величины размера пачки в Kn по формуле

(3.2)

 

image045.

Шаг 3. Определяется время V2(N) пребывания пакета в LSP - пути сети MPLS из N узлов (маршрутизаторов) без организации LSР - туннеля при наличии ограниченной очереди к узлу n длиной Kn по формуле

(3.3)

 
image046.

абонент телефония маршрутизатор трафик

Шаг 4. Определяется время V1(N) пребывания пакета в LSР - туннеле из N узлов по формуле (1)

Рисунок 6 – Зависимость времени пребывания пакета в LSР - туннеле от количества узлов при r=0,7

Шаг 5. Сравниваются величины V1(N) и V2(N). При положительной разнице V1(N) и V2(N) организация туннеля между первым узлом и узлом N не представляется целесообразной. В противном случае принимается решение организовать туннель между первым узлом и узлом n, и работа алгоритма завершается.

Рисунок 7 - Зависимость времени пребывания пакета в LSР - туннеле от количества узлов при при r=0,8

 

Рисунок 8 - Зависимость времени пребывания пакета в LSР - туннеле от количества узлов при r=0,9

Выигрыш во времени от организации туннеля равен разности V1 и V2 Нагрузка на LSP колеблется в диапазоне от р=0,7 до р=0,9. Результаты расчетов представлены на рисунках 6-8.

На этих рисунках видно, что при р=0,7 и р=0,80 организация туннеля не требуется, а при р=0,9 эффективна организация туннеля при N≥14.


Заключение

Проделав данную курсовую работу, и построив графики зависимостей различных величин, можно сделать следующие выводы:

- объем передаваемой информации обратно пропорционален полосе пропускания канала;

- число передаваемых кадров прямо пропорционально объему передаваемой информации;

- скорость обслуживания кадров обратно пропорциональна общей длине кадра;

- степень использования канала связи обратно пропорциональна скорости обслуживания; степень использования канала связи прямо пропорциональна скорости поступления кадров; степень использования канала связи прямо пропорциональна объему передаваемой информации.

- среднее число кадров, одновременно находящихся в системе обратно пропорционально скорости обслуживания; среднее число кадров, одновременно находящихся в системе прямо пропорционально объему передаваемой информации.

 


Cписок литературы

 

1. Будников В.Ю., Пономарев Б.А. Технологии обеспечения качества обслуживания в мультисервисных сетях / Вестник связи.- 2000.- №9.

2. Варакин Л. Телекоммуникационный феномен России / Вестник связи International.- 1999.- №4.

5. Варламова Е. IP-телефония в России/Connect! Мир связи.- 1999.- №9.

3 Гольдштейн Б.С. Сигнализация в сетях связи.-т. 1.- М.: Радио

и связь, 1998.

4 Гольдштейн Б.С., Ехриель И.М., Рерле Р.Д. Интеллектуальные сети.- М.: Радио и связь, 2000.

5. Кузнецов А.Е., ПинчукА. В., Суховицкий А.Л. Построение сетей IP-телефонии


Информация о работе «Расчет сети IP-телефонии: трафик, задержка, маршрутизатор»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 21215
Количество таблиц: 6
Количество изображений: 21

Похожие работы

Скачать
193811
51
26

... рынке интерес к IP-телефонии возрастает также благодаря тому, что сетевое оборудование приобрело некоторые черты УАТС - в первую очередь это касается проблемы питания IP-телефонов, работающих в полностью сетевом (т. е. без привычных УАТС, даже поддерживающих IP) окружении. Пионером в этом направлении выступает, естественно, компания Cisco Systems. Она весьма оперативно модернизировала свое ...

Скачать
515112
3
0

... СУБД; можно управлять распределением областей внешней памяти, контролировать доступ пользователей к БД и т.д. в масштабах индивидуальной системы, масштабах ограниченного предприятия или масштабах реальной корпоративной сети. В целом, набор серверных продуктов одиннадцатого выпуска компании Sybase представляет собой основательный, хорошо продуманный комплект инструментов, которые можно ...

Скачать
131443
11
23

... » трафик, традиционный для телефонных сетей общего пользования. Для этого преобразования используются сигнальные процессоры называемые DSP-кодеками. Рис. 3.3. Сеть передачи голоса по IP протоколу на базе локальной вычислительной сети и ЦАТС АГУ. Оператор предоставления услуг IP телефонии города Москва. Вторая функция, выполняемая маршрутизатором - функция коммуникационного сервера Cisco ...

Скачать
591939
0
0

... 29-10 Упражнение 29 29-11 [КС xv] []Приложение А []Ссылки А-1 []Приложение В []Рисунки В-1 []Приложение С []Решения С-1 []Словарь []Сокращения []Индексы [КС xvi] [1]Технология создания сетей ЭВМ [1]Вопросы и ответы []Эта форма поможет вам получить ответ на любой вопрос, возникший в процессе изучения ...

0 комментариев


Наверх