16. Докажите, что в игре «15» нельзя поменять местами фишки «15» и «14», оставив остальные на месте.

Идея решения.

Рассмотрим «пустое поле» как отдельную фишку. Мы можем только менять «пустую фишку» с соседними. Поскольку пустая фишка должна попасть на исходное поле, число наших операций должно быть четным. Поэтому мы можем получить конфигурации, отличающиеся от начальной только четным числом перестановок.

17. На 44 деревьях, расположенных по кругу, сидели по веселому чижу. Время от времени какие-то два чижа перелетают на соседнее дерево - один по часовой стрелке, а другой - против. Могут ли все чижи собраться на одном дереве?

Решение.

Пронумеруем деревья по кругу с 1-го по 44-е. Сумма номеров деревьев, на которых сидят чижи либо не меняется, либо уменьшается на 44, либо увеличивается на 44. Тем самым, остаток от деления этой суммы номеров на 44 не меняется. Изначально этот остаток равен 22, а если все чижи усядутся на одно дерево, то он будет равен нулю. Поэтому чижи не смогут собраться на одном дереве.

18. Можно ли разрезать выпуклый 17-угольник на 14 треугольников?

Общая постановка задачи.

При помощи инвариантов решаются задачи следующего типа: даны мно­жество М (элементы его мы будем называть «позициями») и правило, по которому разрешается переходить от одной позиции к другой; можно ли из данной позиции а перейти за не­сколько шагов в другую данную пози­цию p? Более общая задача: как. для произвольной пары позиций а, p уста­новить, можно ли из а за несколько шагов перейти в р?

Очевидно, описанные ситуации об­ладают следующим свойством: если из позиции a можно перейти в пози­цию р и из p можно перейти в пози­цию h, то из a можно перейти в h. Это свойство называется транзитив­ностью.

Рассмотрим конкретную задачу.

Задача 1. Круг разделен на n секторов, в которых как-то расстав­лены n фишек. Разрешается одно­временно передвинуть любые две фиш­ки: одну — на один сектор по часовой стрелке, другую — на один сектор в противоположном направлении. Мож­но ли из позиции M, в которой в каж­дом секторе стоит' по одной фишке, перейти к позиции V, в которой все фишки собраны в каком-нибудь од­ном секторе?

В данной задаче, кроме свойства транзитивности, имеет место также следующее важное свойство: если из позиции a можно перейти в пози­цию р, то и из р можно перейти в a. Это свойство называется симмет­ричностью.

Свойство симметричности соблю­дается не во всех задачах рассмат­риваемого типа; например, в шах­матах пешки назад не ходят. В этой статье мы ограничимся задачами, для которых условие симметричности выполнено.

Условимся считать, что из любой позиции a можно «перейти» в нее же. Это свойство называется рефлексив­ностью.

Назовем позиции a и p эквива­лентными, если по заданным прави­лам из a можно перейти в p (ввиду предположенной симметричности это равносильно тому, что из p можно пе­рейти в a). Эквивалентность позиций a и p мы будем обозначать так: a~ p;  неэквивалентность — так: a ~/ p.

Поскольку эквивалентность позиций рефлексивна, симметрична и транзитивна, исходное множество М разбивается на непустые непересекающиеся подмножества (рис. 1): М = M1UM2UM3U... В каждом из подмножеств Mi, все позиции экви­валентны: если a из Мi, и p из Mi, то a~ p. Если же позиции a и p принадлежат разным подмножест­вам: a из Mi p из Mj ( i отлично от j ), то a и p не эквивалентны ). Подмножества Мi мы будем называть орбитами. Повторим еще раз: если мы находимся в позиции a, принадлежащей какой-нибудь орбите Mi, то мы можем, перемещаясь по этой орбите, пере­браться из позиции a в любую другую позицию, принадлежащую орбите. С другой стороны, сойти с этой орбиты, т. е. перебраться с по­зиции a на позицию p, принадлежа­щую любой другой орбите, мы не можем. Орбит может быть как конечное, так и бесконечное число. Впрочем, если множество М конечно, то, ра­зумеется, и число орбит конечно. Инвариант. Числовая функция f, определенная на множестве «позиций» M, назы­вается инвариантной функцией, или инвариантом, если на эквивалент­ных позициях она принимает одина­ковые значения: если a~ р, то f(а) = f(р). (1)

Задача 1 (продолжение). Пусть п = 2т. Раскрасим секторы через один в серый и белый цвет. Тогда при каждом перемещении число фишек в белых секторах либо не меняется (рис. 2), либо увеличи­вается на 2 (рис. 3), либо умень­шается на 2 (рис. 4). Для произвольной расстановки a фишек по секторам обозначим через б (а) число фишек в белых секторах. Рассмотрим теперь такую функцию g.

0, если б (a) четно,

g(a) =

1, если б (a) нечетно.

Из сказанного выше вытекает, что эта функция g (четность числа фишек в белых секторах) является инвариан­том. Поскольку п = 2т, для конеч­ной позиции v имеем g(v) = 0. Если т = 2k+ 1, то n/2 нечетно. Значит, для начальной позиции w имеем g(w) =1. Из того, что g(w) отлично от g(v) вытекает, что позиции w и v не эквивалентны. Таким образом, в этом случае

(п = 2 т, т = 2 k + 1) из позиции w нельзя перейти в пози­цию v. Ну, а если т =2 k? Тогда n/2 четно и g(w) = g(v) = 0. В этом случае инвариант g не дает возможности установить эквивалентны позиции w и v или нет.

Дело в том, что если f - инвариант, то из f(a.) = f(p), вообще говоря, ничего не вытекает. Если f(a) отлично от f(p) то позиции а и p не эквивалентны (это следует из (1)). Если же f(a) = f(p), то позиции а и р могут быть как эквивалентными, так и не эквива­лентными: инварианту не запрещается на разных орбитах принимать одинаковые зна­чения. (Например, постоянная функция, т. е. функция, которая на всех элементах из М принимает одно и то же значение, тоже инвариантна.)

Как же быть? Попробуйте для какого-нибудь п вида 4k перейти от позиции w, к позиции v... Почему-то не удается. Попробуем Найти  другой , более тонкий инвариант.

Занумеруем секторы (скажем, по часовой стрелке) от 1 до n. Для про­извольной расстановки а.фишек по секторам обозначим через xk (а) количество фишек в k-м секторе при расстановке a.

Рассмотрим теперь такую функцию q:

q (a)= 1 x1 (a) + 2 x2 (a) +3x3(a) +

 + ... + n xn(a). (2)

Является ли функция q инвариантом?

 Произвольное допустимое переме­щение (рис. 5) затрагивает 4 слагае­мых суммы (2):

... + i xi (a) + (i + 1) xi+1 (a) + ...+ (j - 1) xj -1(a) + j x j(a)+ …  (3)

При перемещении , изображенном

... + i [xi(a) - 1] + (i + 1) [xi+1(a) + 1]+

 +…+(j – 1) [xj-1(a) + 1] + j [x j (a) - 1] +…

Легко проверяется, что обе суммы равны. Итак, q - инвариант! Нет,

мы забыли, что n-й сектор граничит с первым. Значит, есть еще 3 возмож­ности. Подсчет, аналогич­ный только что сделанному, показы­вает, что в случае, изображенном на рис. 6, q (a) уменьшится на п, а в случае увеличится на п. В третьем случае q (а), конечно, не изменится. Итак, за одно переме­щение значение функции q может измениться, но только на п. Следовательно, функция r, значение которой на расстановке a равно остатку. от деления числа q (a) на п, есть ин­вариант.

Для позиции v (если все п фишек собраны в 1-м секторе)

x1(v) = x2(v) =…= xl -1(v) = xl+1(v) = …=xn (v) = 0,

xl(v) = n.

Значит, q (v) = l n и r (v) = 0 (каковы бы ни были п и l ). С другой стороны,

x1(w) = x2(w) =…= xn(w) = 1. Значит, q(w) = 1 + 2 + 3 +…+ n = (n(n+1))/2

Если n = 2m, то q(w) = nm + m и r(w) = т =/0 . Сле­довательно, при четном п получаем r(w) =/ r(v). Итак, при четном п по­зиции w и v не эквивалентны.

Если же п = 2т + 1, то q(w) = n(m + 1) и r(w) = 0. Таким образом, при нечетном п мы опять имеем: r (и) — r (v). Получается, что при нечетном п вопрос об эквива­лентности позиций w и v снова остается открытым.

Универсальный инвариант

 

Назовем инвариант f универсальным, если на неэквивалентных позициях он принимает различные значения: если a ~/ p, то f(a) ¹f(p) . Таким образом, для универсаль­ного инварианта f: если f(a) = f (р), то a ~ р.

Универсальный инвариант на каждой орбите принимает свое значение. По­скольку для универсального инва­рианта a~p Û f(a) = f(p), универсальный инвариант для любой пары позиций позволяет установить, эквивалентны ояи или нет.

Как проверить, что некоторый ин­вариант f универсален? Общего мето­да не существует. Иногда может по­мочь следующая простая

Теорема. Если а) существуют такие l позиций б1, б2, ..., бl, что каждая позиция a из М эквивалентна одной из них и b) инвариант f при­нимает, по крайней мере, l различ­ных- значений, то f—универсальный инвариант и позиции бi, бj (i=/j) noпарно не эквивалентны.

Из а) вытекает, что существует не более l орбит. Из b) вытекает, что существует не менее l орбит. Следо­вательно, существует ровно l орбит. Снова из b) вытекает теперь, что ин­вариант f принимает ровно l значе­ний и, значит, f универсален. Нако­нец, из а) вытекает, что позиции б1, б2, ..., бl принадлежат разным ор­битам и, таким образом, попарно не эквивалентны.

Задача 1 (окончание). Дока­жем, что инвариант r универсален. Обозначим через бi, такую расстанов­ку фишек: одна фишка — в i-м сек­торе, все остальные — в п-м секторе. Под бn мы будем, разумеется, пони­мать расстановку, при которой все n фишек — в n-м секторе.

Легко сообразить, что любая рас­становка эквивалентна одной из по­зиций б1, б2, ... , бn. В самом деле, пусть a — произвольная расстановка фишек. Попытаемся собрать все п фишек в n-м секторе. Для этого бу­дем передвигать первую фишку, пока не загоним ее в п-ый сектор; од­новременно, в соответствии с прави­лами, мы будем перемещать вторую фишку в противоположную сторону. Затем загоним в n-й сектор вторую фишку, двигая в противоположную сторону третью фишку, и так далее — вплоть до (п— 1)-й фишки. Когда мы загоним п — 1 фишек в n-й сек­тор, п-я фишка будет в каком-то i-м секторе (i = 1, 2, ... , п). Это и озна­чает, что a~ бi.

Посчитаем r(бi). При i не равном п:

x1(бi) == x2(бi) = …= x i - 1(бi) = x i+1 (бi) =...= xn-1(бi)=0,

xi(бi)=1,

xn(бi)-=n - 1.

Следовательно, q (бi) -= i l + п (п— 1) и r (бi) = i. Кроме того, q(бn) = nn и r(бn) = 0. Итак, инвариант r принимает по крайней мере п значений.

По теореме инвариант r универ­сален и позиции б1, б2, ... , бn попарно не эквивалентны.

Поскольку r — универсальный инвариант, a ~ р Û r(а) = r(р).

В предыдущем параграфе мы посчи­тали, что r(w) = r(v) Û n-нечетное. Следовательно, w ~ v ,тогда и толь­ко тогда, когда п — нечетное. Зада­ча, наконец, решена полностью.

Задачи

1.19. Докажите, не используя понятия инварианта, что при не­четном п позиции w и v эквиваленты.

1.20. Проверьте, что любая функция от инварианта снова является инвариантом: если f — инвариант и g — произвольная числовая функция, то и функ­ция h : h(a) = g(f(a)) (4) тоже инвариантна.

1.21.Докажите, что любой инвариант можно представить в виде функции от любого универсального инвариан­та: если h — инвариант, a f — универсаль­ный инвариант, то существует такая число­вая функция g, что выполняется (4).

1.22.Определим через универсальный инвариант r из задачи 1 два новых инварианта: f(a) = [r(a)]2; g(a) = [r(а) - 2]2. Докажите, что инвариант f универсален, а инвариант g не универсален.

1.23. Пусть f - уни­версальный инвариант. Каким условиям должна удовлетворять числовая функция g, чтобы инвариант h, определенный равенст­вом (4), был универсальным?

Задача 2. Даны 20 карточек. На двух карточках написана цифра 0, на двух — цифра 1, ... , на двух последних — цифра 9. Можно ли расположить эти карточки в ряд так, чтобы карточки с 0 лежали ря­дом, между карточками с 1 лежала ровно одна карточка, ... , между кар­точками с 9 лежало ровно 9 карточек?

Эту задачу можно решить без вся­ких инвариантов. Однако для нас она интересна тем, что у нее есть два принципиально разных решения, ис­пользующих инварианты.

Представим себе 20 ящиков, рас­положенных в ряд. Переформули­руем теперь нашу задачу следующим образом: можно ли расположить карточки по ящикам так, чтобы вы­полнялись два условия:

a) карточки с 0 лежат в соседних ящиках, карточки с 1 — через один ящик, ... , карточки с 9— через де­вять ящиков;

b) в каждом ящике лежит по од­ной карточке?

Очевидно, порознь выполнить каж­дое из условий очень легко. Это и приводит к двум решениям.

Первое решение. Поло­жим в первый ящик 10 карточек:

Одну - с 0, одну - с 1, ... , одну - с 9. Затем вторую карточку с 0 по­ложим во второй ящик, вторую кар­точку с 1 - в третий ящик, .... вто­рую карточку с 9 — в одинадцатый ящик. Условие а) выполняется. Мы хотим попытаться, не нарушая его, так переложить карточки, чтобы ус­ловие b) тоже выполнялось. Разре­шим перекладывать любые две «одно­именные» (с одной и той же цифрой) карточки через одинаковое число ящиков. Нетрудно заметить, что при произвольном разрешенном пере­мещении сдвиг в сумме происходит на четное число ящиков. Это подска­зывает идею взять в качестве инва­рианта остаток от деления на 2 суммы номеров ящиков, в которых лежат карточки.

Задачи


Информация о работе «Нестандартные задачи по математике»
Раздел: Математика
Количество знаков с пробелами: 79636
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
21335
0
0

... зміну площ, об'ємів, маси, віку; визначення дня тижня). 4. Задачі геометричного змісту (на просторову орієнтацію, метричні і позиційні задачі). 5. Задачі на рух. Технологія складання нестандартних задач полягає у: а) визначенні параметрів задачі, які покладаються в основу її сюжетної лінії. Наприклад, відстань між двома населеними пунктами; числа; зріст дітей; довжина відрізків; вік хлопчика ...

Скачать
125027
2
0

... «экспериментальных» (52 чел.) и «контрольном» (28 чел.), т. е. в нем участвовало 80 человек. В нашей методике моделировалось проблемное обучение, непосредственно направленное на развитие продуктивного мышления. Она была построена в виде естественного обучающего эксперимента, в котором школьники включаются в проблемные ситуации, рассчитанные на самостоятельное решение новых для них учебных задач. ...

Скачать
66732
4
4

... : 1. Задачи с несформированным условием – задачи, в которых имеются все данные, но вопрос задачи лишь подразумевается. 2. Задачи с избыточным условием – задачи, в которых имеются лишние данные, не нужные для решения, а лишь маскирующие необходимые для решения задачи данные. 3. Задачи с неполным составом условия – задачи, в которых отсутствуют некоторые данные, необходимые для решения задачи, ...

Скачать
36664
0
12

... этом промежутке неравенство (11) также не имеет решений. Итак, неравенство (11) решений не имеет. Ответ: Ø. 3 НЕКОТОРЫЕ ИСКУССТВЕННЫЕ СПОСОБЫ РЕШЕНИЯ УРАВНЕНИЙ Существуют и другие нестандартные методы решения уравнений и неравенств, помимо использования свойств функции. Данная глава посвящена дополнительным методам решения. 3.1 Умножение уравнения на функцию Иногда решение ...

0 комментариев


Наверх