2.2.3.2 Низовой откос

Низовой откос плотин в зоне волновых и ледовых воздействий со стороны нижнего бьефа крепится так же, как верховой. Остальную часть низового откоса защищают от:

-  атмосферных воздействий и неорганизованного стока ливневых вод с гребня;

-  разрушения землеройными животными;

-  негативных воздействий в результате жизнедеятельности человека и животных.

Основным видом крепления низового откоса является биологический вид:

- залужение;

- одерновка сплошная;

- одерновка в клетку;

- гравийно-песчаная отсыпка.

Простые и дешевые способы крепления низового откоса – залужение и одерновка. Залужение вступает в силу после того, как укрепится корневая система трав; на это требуется много времени. Поэтому в данном проекте выбираем крепление низового откоса – одерновка в клетку.

 

2.2.4 Определение отметки гребня плотины

Расчет отметки гребня плотины выполняется в соответствии со Строительными нормами и правилами СНиП 2.06.05-84* "Плотины из грунтовых материалов" для двух расчетных уровней воды в верхнем бьефе водоема: НПУ и ФПУ.

Превышение отметки гребня плотины  над расчетным статическим уровнем воды в водохранилище определяется по формуле:

где - высота ветрового нагона воды, м;

 - высота наката ветровых волн обеспеченностью 1%, м; а - конструктивный запас гребня, м.

Описание: Расчётная схема к определению отметки гребня плотины

Для определения отметки гребня требуется:

•  назначить коэффициент заложения верхового откоса в зоне отметок расчетных уровней;

•  установить параметры волн в водохранилище на подходе к плотине;

•  назначить тип крепления верхового откоса, а для крепления из каменной наброски необходимо определить средний размер камня;

•  провести расчет для двух расчетных уровней воды в верхнем бьефе плотины (НПУ и ФПУ).

Параметры ветровых волн, а также величины  и  определяются в соответствии со СНиП 2.06.04-82 "Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов)".

Для большей наглядности и систематизации расчеты желательно представлять в табличной форме (таблица 4).

Таблица 4

Определение параметров волн и отметки гребня плотины

Исходные данные
Обозначение характеристик ФПУ НПУ УМО
Отметка расчётного уровня, м 113 112 102,8
Отметка дна реки, м 100 100 100
Длина разгона ветровой волны, L, м 2000 1600 800
Угол между продольной осью водоёма и направлением ветра,  (cos=1) 0 0 0
Расчётная скорость ветра на высоте 10 м, v, м/с 14,6 15,6 15,6

Расчётная глубина воды в водохранилище перед плотиной, H1=РУ-дна, м

13 12 5
Продолжительность действия ветра, t,с 21600 21600 21600
Обеспеченность по накату, % 1 1 ¾
Расчёт
Расчётные формулы и данные ФПУ НПУ УМО
Конструктивный запас, a, м 0,5 0,5 ¾

Величина нагона волны, м

0,00669 0,00662 ¾

 при

2,1×10-6

2,1×10-6

2,1×10-6

Величина наката волны, м

0,81 1,82 ¾

1 1 ¾

0,9 0,9 ¾

1,1 1,1 ¾

1,25 1,22 ¾

1 1 ¾

1 1 ¾

92,04 64,50 32,25

14513,42 13583,08 13583,08

0,016 0,0145 0,011

1,58 1,4 1,103

2,35 2,23 1,75

8,63 7,77 4,78

Проверка глубоководности,

Выпол-няется Выпол-няется Выпол-няется

0,348 0,36 0,273

2,07 2,07 2,07

0,72 0,75 0,57

Запас гребня над РУ, м

1,317 2,327 ¾

Отметка гребня, м

114,32 114,33 ¾

Из 2-х полученных отметок принимаю максимальное значение для дальнейшего проектирования:

Тогда высота плотины будет:

2.2.5 Проектирование и назначение дренажа

Дренаж – это элемент плотины, состоящий из хорошо проницаемых материалов и предназначенный для:

1.  организованного сбора и отвода профильтровавшейся воды;

2.  предотвращения выхода фильтрационного потока на низовой откос и в зону, подверженную промерзанию;

3.  понижения депрессионной поверхности с целью повышения устойчивости низового откоса;

4.  повышения устойчивости верхового откоса при быстрой сработке водохранилища, а также для уменьшения или снятия парового давления, возникающего при сейсмических воздействиях, отвода воды, профильтровавшейся через экран, ядро.

Основные конструкции дренажей:

наслонный;

дренажная призма (банкет);

комбинированный;

плоский горизонтальный;

ленточный;

трубчатый горизонтальный;

трубчатый вертикальный.

Дренажные устройства обычно включают приемную и отводящую части. Приемная часть дренажа выполняется в виде фильтра (обратного фильтра), предназначенного для исключения фильтрационных деформаций грунта тела и основания плотины в месте выхода фильтрационного потока в дренаж. В качестве отводящей части используются крупнообломочные грунты тела дренажа выводные ленты и трубы. Принципиальное отличие береговых участков плотины, расположенных на отметках, превышающих максимальный уровень нижнего бьефа, от русловых и пойменных участков заключается в отсутствии необходимости защиты низового откоса от волновых воздействий со стороны нижнего бьефа, поэтому применяемые на незатопляемых береговых участках дренажи могут выполняться облегченной конструкции.

При выборе типа и предварительном назначении параметров дренажей учитывают следующее /38/: при наличии достаточного количества каменного материала предпочтение для русловых и пойменных дренажей следует отдавать дренажной призме (дренажному банкету), так как этот тип дренажа обладает рядом достоинств, в числе которых: дренажная призма хорошо дренирует тело плотины в основание во всем диапазоне колебаний уровней нижнего бьефа; является одновременно креплением низового откоса в зоне волновых воздействий нижнего бьефа; имеет простую конструкцию; дополнительно повышает устойчивость низового откоса за счет высоких сдвиговых характеристик грунтов, применяемых при ее возведении; она может использоваться в отдельных случаях для перекрытия русла реки в период строительства плотины.

При проектировании дренажа необходимо также учитывать физические характеристики грунтов тела и основания плотины, их суффозионность и условия фильтрации в области дренажа.

Наслонный дренаж не понижает кривую депрессии, а только предохраняет низовой откос в месте выхода фильтрационного потока от возможных фильтрационных деформаций.

Дренажная призма широко применяется в грунтовых плотинах благодаря простоте конструкции; работе при любых переменных уровнях воды в НБ; использованию как перемычки при пропуске строительного расхода. Недостаток – требуется относительно большой объём крупного камня.

Так как наслонный дренаж не понижает кривую депрессии, то выполняем дренаж в виде дренажного банкета из грунта №17 (крупнообломочный, глыбовый).Отметка верха дренажной призмы () должна превышать максимальный уровень нижнего бьефа на величину а = 0,5... 1,0 м (принимаю 1м). Обычно высота дренажной призмы составляет  от высоты плотины. Ширина дренажной призмы поверху  зависит от условий производства работ и должна быть не менее 3...4 м. Коэффициент заложения внешнего откоса дренажной призмы , а внутреннего . Толщина и количество слоев обратного фильтра со стороны тела плотины и основания зависит от вида защищаемого грунта и характеристик материала призмы.

Описание: дренаж

 

Определяем отметку верха дренажа:

Превышение гребня дренажного банкета над УНБmax = 102,7 м при  определяют с запасом наводнения, равного в расчете 1м.


=103,7-100=3,7

,

следовательно, проектируем дренаж в виде дренажного банкета.

Ширину банкета поверху назначают из условий производства работ, но не менее 1 м (СНиП 2.06.05-84 п.п.2.54). В данном курсовом проекте ширину банкета принимаем из условия проезда машины и равной 2 м.

Заложения наружного откоса дренажа задают из условий устойчивости (обычно 1,5).

Коэффициент заложения внутреннего откоса обычно составляет 1,25, в данном проекте он составляет 1,25.

Для понижения кривой депрессии дренажный банкет комбинируем с плоским дренажом длиной 7м, с коэффициентом заложения внешнего откоса 1.

Конструкция дренажа показана на рисунке 6.

 

2.2.6 Проектирование обратных фильтров

Обратные фильтры – грунты определенного гранулометрического состава, укладываемые по мере возрастания крупности по направлению движения фильтрационного потока.

Обратные фильтры располагают на контакте дренажа с дренируемым телом плотины, с основанием, на контакте тела плотины с креплением верхового откоса каменной наброской и иногда на контакте ПФУ и боковых призм.

Для обратного фильтра используют имеющиеся карьерные грунты или искусственные материалы. Их подбирают из условия обеспечения фильтрационной прочности сопрягающих грунтов в месте контакта. Если естественный карьерный грунт оказывается непригодным, то проводят его обогащение или отсев крупных фракций.

Коэффициент неоднородности материалов обратных фильтров дренажей должен иметь следующие значения:

1.  если з < 10 – грунт несуффозионный (допустим в качестве обратного фильтра),

2.  если з = 10…20 – грунт полусуффозионный (допустим в качестве обратного фильтра при определенных условиях),

3.  если з > 20 – грунт суффозионный (не допустим в качестве обратного фильтра).

Число слоев обратного фильтра и их состав необходимо определять на основе технико-экономического сравнения различных вариантов. При этом следует стремиться к созданию однослойных фильтров и только в исключительных случаях проектировать многослойные фильтры с возможно меньшим числом слоев.

При расчете однослойного или первого слоя многослойного обратного фильтра используют следующие обозначения:

D50 - размер фракций тела дренажа, масса которых вместе с массой более мелких фракций составляет 50% массы всего грунта;

d50- средний размер фракций I слоя обратного фильтра;

D60- размер фракций тела дренажа, масса которых вместе с массой более мелких фракций составляет 60% массы всего грунта;

D10- размер фракций тела дренажа, масса которых вместе с массой более мелких фракций составляет 10% массы всего грунта;

-


коэффициент неоднородности защищаемого грунта;

-

коэффициент неоднородности первого слоя обратного фильтра;

-

коэффициент междуслойности.

Зерновой состав фильтра должен исключать проникание (просыпаемость) защищаемого грунта в поры фильтра, выпор и вдавливание частиц грунта в поры фильтра, размыв защищаемого грунта на границе с фильтром, отслаивание глинистого грунта на контакте с материалом фильтра, а также суффозию фильтра. В зависимости от типа плотины, а также грунтов ее тела и основания подбор первого слоя обратного фильтра выполняют исходя из различных условий.

При подборе фильтров возможны два случая:

1.  первый – известны параметры карьерного грунта и заданы кривые гранулометрического состава, расчетом устанавливают применимость этих грунтов для фильтра;

2.  второй — данные гранулометрического состава отсутствуют, кривые их определяют из условия отсутствия фильтрационных деформаций.

Обратные фильтры можно подобрать по графикам, разработанным В. С. Истоминой.

Принцип их построения основан на разделении поля графика на две области - допускаемых (ниже кривой) и недопускаемых (выше кривой) характеристик. По осям графиков откладывают характеристики грунтов; если они пересекаются в области допускаемых значений, грунт можно использовать для фильтра, если же они пересекаются в области недопускаемых значений, то грунт нельзя использовать для фильтра.

Подбор зернового состава второго и последующих слоев многослойного фильтра ведут по тем же графическим зависимостям полагая, что через di и Di соответственно обозначены размеры фракций предыдущего и последующего слоев фильтра.

Толщину слоев обратного фильтра назначают с учетом производства работ и технико-экономических расчетов. По фильтрационным условиям толщина каждого слоя должна быть не менее 3D85, но не меньше 0,2 м.

Подбор обратных фильтров

Земляную плотину с комбинированным дренажем в виде банкета в сочетании с ленточным возводят на супесчаном основании. Грунт тела плотины супесь с d50 = 0,15 мм, основание – крупный песок с d50 = 0,15 мм. Тело дренажа - глыбовый грунт с D50 = 330 мм, =15.

Проверяем необходимость устройства обратного фильтра:

Тело плотины – тело дренажа

Так как контактируют связный грунт тела плотины с несвязным грунтом тела дренажа, то необходимость устройства обратного фильтра будем определять по первому графику Истоминой. Для этого вычисляем значения коэффициента неоднородности грунта дренажа

 и .

Определяем местоположение точки с координатами (15; 330) по третьему графику Истоминой.

Так как точка попадает в область недопустимых характеристик, то нужен обратный фильтр на контакте тела плотины с телом дренажа.

Первый слой обратного фильтра:

Для обратного фильтра используем карьерный грунт 14 (галечниковый), который подбирается из условий обеспечения фильтрационной прочности сопрягающих грунтов в месте контакта.

Так как по контакту защищаемого грунта тела дренажа с проектируемым обратным фильтром будет восходящий фильтрационный поток, то проверку выполняем по графику [3], рис. 3.13б, стр. 134. При этом грунт фильтра не должен быть суффозионным.

Проверяем характеристики подобранного грунта:

 

грунт несуффозионный,

.

Соответствующая им точка располагается в области допустимых характеристик см. [3], рис. 3.13б, стр. 134,  и , следовательно, для этой контактной зоны карьерный грунт 14 применим.

Проверяем, контактирует ли подобранный слой с телом дренажа:

Проверяем контакт 14 грунта с телом дренажа по второму графику Истоминой [3], рис. 3.13б, стр. 134. Для этого вычисляем значения коэффициента неоднородности карьерного грунта

 


и коэффициента междуслойности

  

грунт несуффозионный.

Определяем местоположение точки с координатами (17,3; 9) по второму графику Истоминой.

Так как точка попадает в область допустимых характеристик, следует, что подобранный слой фильтра контактирует с телом дренажа.

Проверяем, контактирует ли подобранный слой с телом плотины:

Для проверки отсутствия фильтрационных деформаций по контакту обратного фильтра дренажа с телом плотины пользуемся Истоминой [3], рис. 3.13б, стр. 134. Точка, имеющая координаты

 и ,

попадает в область недопустимых характеристик, следует, что тело плотины не контактирует с подобранным слоем фильтра.

Второй слой обратного фильтра:

Для второго слоя обратного фильтра используем крупный песок (9 грунт), который подбирается из условий обеспечения фильтрационной прочности сопрягающих грунтов в месте контакта.

Так как по контакту защищаемого грунта тела дренажа с проектируемым обратным фильтром будет восходящий фильтрационный поток, то проверку выполняем по графику [3], рис. 3.13б, стр. 134. При этом грунт фильтра не должен быть суффозионным.

Проверяем характеристики подобранного грунта:


 

грунт несуффозионный,

.

Соответствующая им точка располагается в области допустимых характеристик см. [3], рис. 3.13б, стр. 134,  и , следовательно, для этой контактной зоны грунт 9 применим.

Проверяем, контактирует ли второй подобранный слой с первый слоем обратного фильтра:

Проверяем контакт 9 грунта с первым слоем обратного фильтра по второму графику Истоминой [3], рис. 3.13б, стр. 134. Для этого вычисляем значения коэффициента неоднородности карьерного грунта

 

и коэффициента междуслойности

  

грунт несуффозионный.

Определяем местоположение точки с координатами (21,25; 7,5) по второму графику Истоминой.

Так как точка попадает в область допустимых характеристик, следует, что подобранный слой фильтра контактирует с первым слоем.

Проверяем, контактирует ли подобранный слой с телом плотины:

Для проверки отсутствия фильтрационных деформаций по контакту обратного фильтра дренажа с телом плотины пользуемся Истоминой [3], рис. 3.13б, стр. 134. Точка, имеющая координаты

 и ,

попадает в область допустимых характеристик, следует, что тело плотины контактирует с подобранным слоем фильтра.

На основе проведённых расчётов делаем вывод о том, что карьерный грунт с  и  = 17 мм, и местный грунт с ,  можно использовать для обратного фильтра комбинированного дренажа.

Таким образом, обратный фильтр состоит из двух слоев, которые контактируют и с телом дренажа, и с телом плотины и состоят из галечникового грунта и крупного песка.

Тело дренажа – основание плотины

Расчёт такой же исходя из того, что основание, на котором возводится плотина, состоит также из супеси – 5го грунт – что и тело плотины.

Таким образом, обратный фильтр состоит из двух слоев, которые контактируют и с телом дренажа, и с телом плотины и состоят из галечникового грунта и крупного песка.

 


Информация о работе «Гидроузел с плотиной из грунтовых материалов»
Раздел: Строительство
Количество знаков с пробелами: 69438
Количество таблиц: 6
Количество изображений: 18

Похожие работы

Скачать
99056
16
20

... - плотность воды; V - объем защемленного в грунте воздуха в долях 1,0 (в глине 0,03, суглинке 0,04, супеси 0,05, лёссе 0,07); Wрасч - расчетная влажность грунта (в долях 1,0). Обычно в каменно-земляных плотинах 1 и 2 классов расчетное значение плотности глинистого грунта при укатке γсухрасч принимается не менее γсухмакс по стандартному Проктору. Вместо формулы (6.69) для определения ...

Скачать
193255
15
1

... , чрезвычайные ситуации на которых могут привести к большим человеческим жертвам и значительному материальному ущербу. 2.  Для расчета последствий чрезвычайных ситуаций на гидротехнических сооружениях Павловской ГЭС, проведена оценка состояния сооружений и рассмотрено местоположение данного объекта. Показано, что некоторые сооружения Павловского гидроузла находятся в изношенном состоянии, ...

Скачать
43932
3
0

... гидротехнических сооружений: - обеспечение безопасного забора воды из источника водоснабжения, наблюдение и уход за гидротехническими сооружениями и обеспечение их сохранности (от воздействий льда, воды, деформаций грунта и пр.); - Ремонт, восстановление, реконструкция гидротехнических сооружений; - борьба с потерями воды в прудах и каналах; - разработка и осуществление мероприятий по пропуску

Скачать
57687
26
7

... 164,54 — Таким образом, для дальнейшего проектирования с учетом округления принимаем ▼Гр=165м   6.2 Построение диспетчерского графика водохранилища многолетнего регулирования   После того как запроектирована водохозяйственная система, определены ее основные технико-экономические показатели, основной задачей становится определение режима её функционирования в течение пускового периода ...

0 комментариев


Наверх