5. Силы, вызывающие бег на 100 м с низкого старта, их происхождение и взаимодействие

 

При анализе беговых движений достаточно рассмотреть один цикл бегового движения (характер и последовательность движений отдельных звеньев и всего тела), включающий в себя двойной шаг (шаг с правой и с левой ноги).

В двойном шаге содержатся два периода опоры и два периода полета. В каждом периоде различают две фазы. Период опоры включает в себя фазы торможения и отталкивания. А в периоде полета – фазы подъема и снижения ОЦМТ. Каждый период и каждая фаза имеют условные границы, которыми служат моменты движения.

Таким образом, последовательность фаз в цикле движений ноги следующая:

Период опоры

Момент постановки ноги

Фаза торможения

Момент вертикали (наинизшая точка траектории ОЦМТ)

Фаза отталкивания

Момент отрыва ноги

Период полета

Фаза подъема ОЦМТ

Момент наивысшей точки траектории ОЦМТ

Фаза снижения ОЦМТ


Что же является источником движения в беге?

Согласно первому закону динамики, движение тела происходит в результате взаимодействия сил. Источником движущих сил в беге является работа мышц. Но одной мышечной силы для передвижения недостаточно. Для движения требуются внешние силы, которые, взаимодействуя с внутренними силами (силы, возникающие при работе мышц), создадут возможность передвижения. Внешними силами при движении человека (ходьба, бег и т. д.) являются: сила тяжести (Р), сила сопротивления среды (Q), сила реакции опоры (R).

Сила тяжести действует постоянно вниз и играет различную роль: при движении тела вниз она является движущей силой, а при движении вверх – тормозящей. Сила тяжести не может увеличить или уменьшить горизонтальную скорость движения. Она только изменяет направление его.

 

Рис. 8. Схема векторов опоры в беге (В.В. Тюпа, 1978): а – максимум фазы торможения, б – момент вертикали, в – максимум фазы отталкивания

Рис. 9. Разложение на составляющие давления ног (Fобщ) и реакции опоры (Rобщ) в период отталкивания

Сопротивление среды является тормозной силой, которая всегда противоположна направлению движения тела по горизонтали, и возрастает пропорционально квадрату скорости бегуна. Она весьма существенна в беге с максимальной скоростью. Так, в марафонском беге V=5 м/с (сила сопротивления среды равна около 8,8 Н), а в спринте – ±10 м/с (сила сопротивления колеблется в пределах 21-41 Н и зависит от размеров тела бегуна).

Сила реакции опоры в беге является переменной как по величине, так и по направлению. Она равна по величине и направлена противоположно силе отталкивания ноги от грунта. Сила эта зависит от массы тела бегуна, от скорости бега и от мышечных усилий, развиваемых спортсменом. Направление силы реакции опоры в беге непрерывно изменяется в различные моменты и фазы опорного периода (рис. 8).

Когда тело бегуна находится прямо над центром давления на площадь опоры, то реакция опоры под действием массы тела бегуна направлена вертикально вверх (вертикальная составляющая реакция опоры). Но ОЦМТ не всегда находится над центром давления на опору. В этом случае опорная реакция будет направлена под острым углом. Поэтому силу давления (F) и силу реакции опоры (R) можно разложить на две составляющие: вертикальную (Fy, Ry) и горизонтальную (Fx, Rx). Равнодействующая этих величин и будет определять движение бегуна. Вертикальная составляющая реакции опоры противодействует силе тяжести. В том случае, когда Fy больше веса тела бегуна, движение ОЦМТ направлено вверх, и наоборот. Горизонтальная составляющая реакции опоры зависит от общей силы давления на грунт (Fo) и от угла α, под которым производится давление, и играет первостепенное значение в поступательном движении. Угол α называют углом отталкивания. Угол отталкивания определяется по углу наклона продольной оси ноги в момент отталкивания от дорожки. Продольная ось соединяет точку давления ноги на опору и тазобедренный сустав. Кроме того, в биомеханике спорта угол отталкивания определяют по направлению опорной реакции, по направлению линии, соединяющей точку опоры с ОЦМТ, по направлению ускорения ОЦМТ Он определяет направление равнодействующей Fx и Fy (рис. 9.). В спринтерском беге величина Fo, намного больше, чем в беге на средние и длинные дистанции, и направлена под более острым углом.

На рис. 8. видно, что опорная реакция в момент постановки ноги на грунт направлена назад-вверх, этим создается торможение или замедление скорости бега в фазе передней опоры.

Уменьшение этой величины обеспечивается за счет амортизации ноги и постановки ее ближе к проекции ОЦМТ на дорожку. Однако полностью исключить действие тормозящих сил невозможно, и поэтому ставится задача сделать ее минимальной.

Рассмотрим некоторые особенности беговых движений относительно тех условных обозначений (периоды, фазы и т. д.), которые были описаны выше.

Период опоры для поступательного движения является основным и длится от момента постановки ноги на грунт до момента отрыва. Нога в этот период принимает на себя тяжесть падающего тела, амортизирует и затем производит отталкивание от грунта, создавая этим поступательное движение вперед (фаза отталкивания).

Рис. 10. Вертикальные (Fверт) и горизонтальные (Fгориз) усилия в опорном периоде в беге

 

Запись динамограмм опорных реакций представлена на рис. 10. Кривая вертикальных усилий может иметь различную конфигурацию – однопиковую, двухпиковую (В. К. Бальсевич, 1965; Н. А. Фесенко, 1972 и др.). Ее величина и продолжительность зависят от: скорости бега, массы тела спортсмена, степени согласованности движений отдельных звеньев тела, напряжения мышц опорной ноги, расстояния между проекцией ОЦМТ и стопой ноги в момент постановки ее на опору.

Горизонтальные усилия бегуна с момента постановки ноги и до начала фазы отталкивания направлены вперед и создают торможение (отрицательное ускорение). Затем в фазе отталкивания давление на опору направлено назад, при этом создается положительное ускорение большинству звеньев тела, а значит, и ОЦМТ.

Отрицательное ускорение длится с момента постановки ноги и постепенно уменьшается до нуля к моменту наименьшей траектории ОЦМТ. Опорная нога в этой фазе, амортизируя, замедляет и приостанавливает опускание тела бегуна вниз. После того как отрицательное ускорение достигло нуля, наступает фаза отталкивания, которая заканчивается к моменту отрыва ноги от опоры. Положительное ускорение в фазе отталкивания достигается преимущественно за счет энергичного выпрямления опорной ноги. [2, 3]

Период полета характеризуется движением тела по инерции, а траектория ОЦМТ имеет форму параболы. Сила тяжести тела бегуна изменяет направление движения книзу, а сопротивление воздуха снижает скорость движения.

Движения ОЦМТ. Внешние силы, действуя на тело спортсмена, препятствуют прямолинейности и равномерности поступательного движения ОЦМТ. Кроме продвижения вперед ОЦМТ совершает вертикальные и боковые колебания. Боковые перемещения в основном происходят за счет переноса тяжести тела с одной ноги на другую. В сравнении с вертикальными колебаниями они незначительны. Размах вертикальных колебаний ОЦМТ в опорном периоде достигает 6,6±1,6 см, причем величина его снижения в фазе торможения равна 1,8±0,8 см, а подъем в фазе отталкивания (до момента вылета) составляет 3,9±1 см при скорости 8,31 ±1,1 м/с (В. В. Тюпа, Ю. Н. Примаков, Д. Н. Ярмульник, 1987).

Траекторию движения ОЦМТ можно представить в виде синусоидальной кривой с одновременным перемещением в боковой плоскости. Путь ОЦМТ бегуна в отдельные фазы движения неодинаков. Отмечается тенденция к сокращению пути торможения и увеличению перемещения ОЦМТ в фазе отталкивания (табл. 1).

Таблица 1

Кинематические характеристики движения ОЦМТ в горизонтальном направлении за время одного бегового шага (п = 65)

Наименование Перемещение ОЦМТ, см Скорость бега, м/с
Весь шаг Период опоры
фаза торможения фаза отталкивания
Среднее значение 212±18 38,8±6,8 60,3±7,5 8,3±1,1
Корреляционная связь со скоростью бега 0,55 –0,31 0,58

Скорость поступательного движения ОЦМТ в отдельных фазах движения различна. Наибольшая скорость наблюдается в момент отрыва ноги от грунта, а самая низкая – к моменту вертикали в опорном периоде.

Движения ног. Остановимся на тех моментах, которые не были рассмотрены ранее.

Постановка ноги на грунт происходит несколько впереди проекции ОЦМТ на опору (в зависимости от скорости бега и индивидуальных особенностей техники бегуна). Последующая фаза торможения происходит за счет сгибания ноги в тазобедренном, коленном и разгибания в голеностопном суставе. Так, в спринтерском беге в момент вертикали угол в коленном суставе опорной ноги составляет 130-140°, в тазобедренном – 63-67°.

В фазе отталкивания происходит резкое разгибание ноги в тазобедренном и коленном суставах и активное сгибание голеностопного сустава, что обеспечивает положительное ускорение и продвижение тела спортсмена вперед.

После отрыва ноги от опоры начинается перенос ноги из крайне заднего положения вперед. Движение ноги последовательно характеризуется подъемом, разгоном, торможением и опусканием ее на опору.

Оторвавшись от грунта, нога резко движется вперед-вверх, сгибаясь при этом в коленном и тазобедренном суставах. Это движение вызывает резкое укорочение рычага ноги и уменьшение ее момента инерции (условно будем рассматривать ногу как маятник), что позволяет ей тем самым намного быстрее продвинуться вперед-вверх. Это создает возможность повысить частоту шагов в беге. Скорость дистальных частей ног в период переноса в беге с максимальной скоростью достигает 25 м/с (Н. А. Бернштейн, 1940).

В период полета происходит разведение и сведение ног. Разведение ног продолжается и после отрыва опорной ноги от грунта. Сведение ног в полетном периоде начинается приблизительно в момент наивысшей точки траектории ОЦМТ. Это движение не изменяет скорости в полете, но создает благоприятные предпосылки для увеличения частоты шагов в беге.

Движения таза, рук и туловища в беге. Движение таза характеризуется не только поступательным, но и вращательным движением. Наиболее выраженные вращения таза вокруг продольной оси – повороты в сторону опорной ноги. К моменту отрыва ноги от грунта угол поворота достигает максимума – до 45° (по Ф. Шмидту и Демени, цит. по Д. А. Семенову, 1939). В момент вертикали угол поворота равен нулю. Кроме этого, в беге происходит вращение вокруг сагиттальной оси (наклон в сторону). Наибольший наклон таза в сторону маховой ноги наблюдается в момент вертикали. Вследствие этого колено маховой ноги сказывается несколько ниже колена опорной ноги. В фазе заднего отталкивания наблюдается обратная картина – происходит наклон таза в сторону толчковой ноги. Движения таза в сагиттальной плоскости больше выражены в медленном беге, чем в спринте. Все эти вращательные движения таза увеличивают поступательное движение тела спортсмена. Поворот таза вокруг продольной оси ведет к увеличению длины шагов, помогает отталкиванию и выносу маховой ноги вперед, так как при этом включаются в работу дополнительные группы мышц.

Движения рук в беге с максимальной скоростью происходят в переднезаднем направлении, с большой амплитудой в плечевых суставах и изменением угла в локтевом суставе. При движении руки вперед угол в локтевом суставе уменьшается, а при движении руки назад увеличивается.

В беге на средние и длинные дистанции амплитуда движения рук намного меньше и направление их несколько изменено. При выносе руки вперед она несколько приводится вовнутрь, а с движением назад – отводится наружу. [2, 3]

Положение туловища в беге также непостоянно. В фазе отталкивания туловище несколько наклонено вперед, а в полетной фазе стремится к вертикальному положению. В беге на длинные дистанции колебание туловища меньше, чем в спринте.

6. Задачи для формирования и совершенствования умений и навыков при обучении бегу на 100 м с низкого старта на максимальный результат

1.  Ознакомиться с особенностями бега каждого занимающегося, определить его основные недостатки и пути их устранения.

2.  Научить технике бега по прямой дистанции.

3.  Научить технике высокого старта и стартовому ускорению.

4.  Научить низкому старту и стартовому разбегу.

5.  Научить переходу от стартового разбега к бегу по дистанции.

6.  Научить финишному броску на ленточку.

7.  Совершенствовать технику бега в целом. [3, 4]

7. Методы и приёмы обучения бегу на 100 м с низкого старта на максимальный результат

 

1.  Рассказ о технике бега на 100 м с низкого старта на максимальный результат.

2.  Показ техники бега на 100 м с низкого старта на максимальный результат.

3.  Практическое обучение технике свободного бега по прямой методом повторного пробегания отрезков различной длины с конкретными заданиями на технику бега.

4.  Практическое обучение технике высокого старта и стартового ускорения игровым методом и методом многократного повторения высокого старта из различных исходных положений по сигналу и без.

5.  Практическое обучение технике низкого старта и стартового ускорения методом повторного выполнения начала бега с низкого старта при различной постановке стартовых колодок.

6.  Практическое обучение переменному бегу и переходу от стартового разбега к бегу по дистанции методом повторного пробегания с переменной скоростью отрезков различной длины.

7.  Практическое обучение финишному броску на ленточку методом рассказ и показа вариантов финиширования, а также повторным методом индивидуально, в парах и в группе. [3, 4]


8. Задачи для развития двигательных качеств при обучении бегу на 100 м с низкого старта на максимальный результат

1.  Совершенствовать гибкость.

2.  Совершенствовать способность к произвольному расслаблению мышц во время выполнения бега.

3.  Совершенствовать скоростные способности рук и ног.

4.  Совершенствовать скоростно-силовые способности рук и ног.

5.  Совершенствовать силовые способности ног.

6.  Совершенствовать быстроту реакции на сигнал.


Список использованных источников

 

1.  Алабин, В.Г., Юшкевич, Т.П. Спринт. Мн., 1977.

2.  Донской Д. Д. Биомеханика. Учеб пособие для студентов фак. физ. воспитания пед. ин-тов. М., «Просвещение», 1975. – 239 с., ил.

3.  Легкая атлетика: Учеб. для ин-тов физ. культ./ Под ред. Н. Г. Озолина, В. И. Воронкина, Ю. Н. Примакова.– Изд. 4-е, доп., перераб. М.: Физкультура и спорт, 1989. – 671 с, ил.

4.  Легкая атлетика. учебник / М.Е. Кобринский [и др.]; под. общ. ред. М.Е. Кобринского, Т.П. Юшкевича, А.Н. Конникова. – Мн.: Тесей, 2005. – 336 с.

5.  Озолин, Э.С. Спринтерский бег. М., 1986.


Информация о работе «Анализ бега на 100 метров»
Раздел: Физкультура и спорт
Количество знаков с пробелами: 35506
Количество таблиц: 5
Количество изображений: 10

Похожие работы

Скачать
61850
0
0

... потребления липидов и продолжаться длительное время; должны привести к потреблению лактата, образуемого во время выполнения предшествующей нагрузки. 16 Характер физиологической нагрузки при тренировке по бегу Физиологами установлено, что если как интенсивность, так и продолжительность тренировочного занятия бегуна будут выбраны правильно, то можно наблюдать появление прочих важных эффектов, в ...

Скачать
23664
2
0

... на рост других. Например, развитие силы или скорости движений способствует более эффективному проявлению специальной выносливости, лучшему и более быстрому освоению основ техники барьерного бега. Также ассоциативно в этом отношении воздействие силы, ловкости, гибкости и т. д. На последующих этапах подготовки барьеристов эффективность подобного (аналитического) развития физических качеств снижается ...

Скачать
63145
0
0

... – третий после Гетеборга-2006 (34) и Хельсинки-1994 (25). Тот же количество наград в тотале было в Мюнхене-2002 (24). Если анализировать подготовку российской сборной по видам легкой атлетики, то результаты будут далеко не равнозначными. Что касается женщин, то стоит отметить замечательное выступление на крупнейших соревнованиях четырехлетия "слабой" половины российской сборной. Даже в ...

Скачать
85517
4
3

... необходимости, активно воздействовать на спортсмена. Большую роль играет семья, ведь проявляя интерес к занятию своего ребенка конькобежным спортом, они стимулируют его на достижение более высоких результатов, могут способствовать снятию стрессовых ситуаций. Перечисленные особенности необходимо учитывать в работе с детьми в каждом конкретном возрастном периоде. Глава. II ЭКСПЕРЕМЕНТАЛЬНОЕ ...

0 комментариев


Наверх