1.2 Способы задания множеств

Иррациональность чисел поставила нас перед необходимостью работать с бесконечными множествами. Но на самом деле с бесконечностью приходится сталкиваться постоянно, например любая геометрическая фигура – множество точек: отрезок, окружность, трапеция, конус… – все эти фигуры содержат бесконечное количество точек. Исходя из этого, возникает необходимость задания множеств, для удобства работы с ними. Чтобы задать множество, нужно указать, какие элементы ему принадлежат. Это можно сделать различными способами. Укажем две наиболее употребительные формы задания (определения) множеств

-  перечисление элементов, то есть указание всех элементов множества, которые принято заключать в фигурные скобки. Если элементы: Ò, Â, Á, À, w - принадлежат множеству М, то записывается М={Ò, Â, Á, À, w };

-  характеристическое свойство, когда среди элементов какого-либо множества выделяются с помощью высказывания, элементы, обладающие некоторым свойством (характеризующим это множество). Пусть P(x) – какое-то свойство числа x. Тогда запись {x | P(x)} означает множество всех таких чисел, которые обладают свойством P(x). Например, множество {x | x2 – 3x + 2=0} есть совокупность корней уравнения x2 – 3x + 2=0, то есть это множество состоит из двух элементов: 2 и 1; {x | 3 < x < 7} – множество всех чисел, удовлетворяющих неравенствам 3 < x < 7; {x | x>12 и x<3} = Æ;

Однако при задании множеств как одним, так и другим способом могут возникнуть проблемы. Например, пусть множество А состоит из русских слов «стол», «мир» и символа «$» в стандартной символике, то есть А={ стол, мир, $}. Множество А^, состоящее из таких же символов, но на английском языке, будет другим А^={ table, peace, $}. Так что нужно быть точным в перечислении (то есть задании множеств путём перечисления). И ещё один пример, связанный с каким-либо учебником или книгой. Существует много экземпляров какой-то книги, если имеется в виду конкретная книга (например, принадлежащая определённому человеку), получим один вариант, если имелись ввиду все экземпляры, вышедшие из типографии (например, тираж 100 тыс. книг) – другой вариант, если же иметь ввиду только сохранившиеся к настоящему моменту – третий вариант. Поэтому необходимо быть точным при задании множеств перечислением.

Но и способ задания множества с помощью характеристических свойств элементов таит некоторые опасности, поскольку "неправильно" заданные свойства могут привести к противоречию. Приведем один из наиболее типичных теоретико-множественных парадоксов – парадокс Рассела. Рассмотрим множество всех множеств, не содержащих себя в качестве элемента:


Y = {X | XÏX}

Если множество Y существует, то мы должны иметь возможность ответить на следующий вопрос: YÎY? Пусть YÎY, тогда должно выполняться свойство, задающее множество Y, то есть YÏY. Пусть YÏY, то, поскольку выполняется свойство, задающее Y, приходим к тому, что YÎY, а это противоречит предположению. Получается неустранимое логическое противоречие. Вот три способа избежать этого парадокса.

1.  Ограничить используемые характеристические предикаты видом

P(x) = x Î A & Q(x),

где A – известное, заведомо существующее множество (универсум). Обычно при этом используют обозначение {x Î А | Q(x)}. Для Y универсум не указан, а потому Y множеством не является;

2.  Теория типов. Объекты имеют тип 0, множества имеют тип 1, множества множеств — тип 2 и т. д. Y не имеет типа и множеством не является;

3.  Характеристическое свойство P(x) задано в виде вычислимой функции (алгоритма). Способ вычисления значения свойства X Î X не задан, а потому Y множеством не является.

Последний из перечисленных способов лежит в основе так называемого конструктивизма — направления в математике, в рамках которого рассматриваются только такие объекты, для которых известны процедуры (алгоритмы) их порождения. В конструктивной математике исключаются из рассмотрения некоторые понятия и методы классической математики, чреватые возможными парадоксами.


1.3 Количество элементов в множестве

Мощность множества – это обобщение понятия количества (числа элементов множества), которое имеет смысл для всех множеств, включая бесконечные.

Существуют большие, есть меньшие бесконечные множества, среди них счётное множество является самым маленьким.

В теории множеств счётное множество есть бесконечное множество, элементы которого возможно занумеровать натуральными числами. Более формально: множество X является счётным, если существует биекция X\to{\mathbb N}, где {\mathbb N}обозначает множество всех натуральных чисел. Другими словами, счётное множество — это множество, равномощное множеству натуральных чисел.

Счётное множество является «наименьшим» бесконечным множеством, т. е. в любом бесконечном множестве найдётся счётное подмножество.

Свойства:

1.  Любое подмножество счётного множества конечно или счётно;

2.  Объединение конечного или счётного числа счётных множеств счётно;

3.  Прямое произведение конечного числа счётных множеств счётно;

4.  Множество всех конечных подмножеств счётного множества счётно;

5.  Множество всех подмножеств счётного множества континуально и, в частности, не является счётным.

Несчётное множество – такое бесконечное множество, которое не является счётным. Таким образом, любое множество является либо конечным, либо счётным, либо несчётным. Множество рациональных чисел и множество алгебраических чисел счётны, однако множество вещественных чисел континуально и, следовательно, несчётно. Два множества называются равномощными, если между ними существует биекция. Существование биекции между множествами есть отношение эквивалентности, а мощность множества — это соответствующий ему класс эквивалентности.

Свойства

·  Два конечных множества равномощны тогда и только тогда, когда они состоят из одинакового числа элементов. Т.е. для конечного множества понятие мощности совпадает с привычным понятием количества.

·  Для бесконечных множеств мощность множества может совпадать с мощностью его собственного подмножества, например |{\mathbb N}|=|\mathbb Z|

Z (множество целых чисел) = {-3,-2,-1,0,1,2,3…};

N (множество натуральных чисел) = {1,2,3,4,5,6,7...};

0,1,-1,2,-2,3,-3… целых чисел столько же, сколько и натуральных

1,2, 3,4, 5, 6, 7…

·  Теорема Кантора гарантирует существование более мощного множества для любого данного: Множество всех подмножеств множества A мощнее A, или | 2A | > | A | .

·  С помощью канторова квадрата можно также доказать следующее полезное утверждение: Декартово произведение бесконечного множества A с самим собой равномощно A.

Следуя Кантору, мощность множества называется кардинальным числом и обозначается мощность такого множества A через | A | (сам Кантор использовал обозначение \overline{\overline{A}}). Иногда встречается обозначение \# A.

Мощность множества натуральных чисел {\mathbb N}обозначается символом \aleph_0(«алеф-нуль»). Множество называется бесконечным, если его мощность \ge \aleph_0, таким образом, счётные множества — это «самые маленькие» из бесконечных множеств. Следующие кардинальные числа в порядке возрастания обозначаются \aleph_1, \aleph_2,\dots.

Про множества, равномощные множеству всех вещественных чисел, говорят, что они имеют мощность континуума, и мощность таких множеств обозначается символом c (continuum). Континуум-гипотеза утверждает, что c=\aleph_1.

Для мощностей, как и в случае конечных множеств, имеются понятия: равенство, больше, меньше. Т.е. для любых множеств A и B возможно только одно из трёх:

1.  | A | = | B | или A и B равномощны;

2.  | A | > | B | или A мощнее B, т. е. A содержит подмножество, равномощное B, но A и B не равномощны;

3.  | A | < | B | или B мощнее A, в этом случае B содержит подмножество, равномощное A, но A и B не равномощны.

Ситуация, в которой A и B не равномощны и ни в одном из них нет части, равномощной другому, невозможна. Это следует из теоремы Цермело. Иначе это означало бы существование несравнимых между собой мощностей (что в принципе возможно, если не принимать аксиому выбора).

Ситуация, в которой | A | > | B | и | A | < | B | , невозможна по теореме Кантора — Бернштейна.

Два множества называются эквивалентными, если их элементы можно разбить на пары, так, чтобы вне этих пар не останется ни одного элемента из этих множеств.

Множество правильных положительных дробей содержит столько же элементов, сколько и натуральных чисел.


Глава 2. Операции над множествами

Над множествами, как и над многими другими математическими объектами, можно совершать различные операции. В результате операций из исходных множеств получаются новые.


Информация о работе «Элементы теории множеств»
Раздел: Математика
Количество знаков с пробелами: 32108
Количество таблиц: 1
Количество изображений: 7

Похожие работы

Скачать
100095
5
2

... проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросах билета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях. 1.  Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами. 2.  ...

Скачать
23124
0
0

... , почему именно эти аксиомы оказались настолько успешными и достойными специального внимания. Соответственно самая большая слабость формализма состоит в невозможности объяснить, почему аксиомы теории множеств, предположительно не отражающие никакой реальности, способны доказывать арифметические утверждения, не доказуемые с помощью более финитистских средств. Слабость, которую, как я полагаю, ...

Скачать
24811
0
698

... вующий класс (предло­жение 4), то из аксиомы S следует, что для любого множества х класс всех его элементов, удовлетворяющих дан­ной предика­тивной формуле A(у), есть множество. Однако для полного развития теории множеств потребуется ак­сиома, более сильная, чем аксиома S. Введем предварительно несколько оп­ределений. Определения Un (X) означает xyz ( X & X y = z). (X однозначен.) ...

Скачать
53712
10
2

... монету второй раз не бросают), в четвертом — второму. Шансы игроков на выигрыш относятся как 3 к 1. В этом отношении и надо разделить ставку. Глава II. Элементы теории вероятностей и статистики на уроках математики в начальной школе (методика работы) Первый шаг на пути ознакомления младших школьников с миром вероятности состоит в длительном экспериментировании. Эксперимент повторяют много раз при ...

0 комментариев


Наверх