14. Строим динамическую линию нагрузки (ЛН) на семействе выходных характеристик.

15. Определяем динамический режим работы транзистора. Для этого откладываем на оси абсцисс амплитуду выходного напряжения  и делаем вывод о правильности выбора напряжения источника питания. Затем находим амплитудные значения тока коллектора  и тока базы . Переносим значения тока  на семейство входных характеристик и находим напряжение .

16. Находим сопротивление резистора R8, мощность, рассеиваемую им, а затем выбираем его тип:

Выбираем резистор МЛТ – 0,125 – 180 кОм ± 5%

17. Расчет делителя произведем, задавшись значением :


Пусть , тогда:

, откуда

18. Определяем ток делителя , а затем рассчитываем мощность рассеивания резисторов  и  и выбираем их тип и номинал.

Выбираем резисторы: R5 - МЛТ – 0,125 – 510 кОм ± 5%

R6 - МЛТ – 0,125 – 20 кОм ± 5%

19. Вычисляем входное сопротивление оконечного каскада :

, где

20. Определяем мощность, потребляемую базовой цепью транзистора VT2 от предыдущего каскада:

Расчёт предоконечного каскада усилителя:

21. Вычисляем выходную мощность предоконечного каскада

где Кзм - 1,1...1,2 - коэффициент запаса, учитывающий потери мощности в цепи смещения оконечного каскада.

22. Находим мощность Рк.Р, рассеиваемую коллектором VT1:


23. Принимая, с учетом падения напряжения на резисторе фильтра Rф, напряжение питания предоконечного каскада , выбираем транзистор VT1:

Наиболее подходящим транзистором является КТ201Б, его параметры:

24. Выбираем сопротивление резистора R3:

Пусть, тогда для

25. Рассчитываем режим покоя транзистора VT1:

Ø  принимаем

;

Ø  вычисляем ток базы покоя .

26. Рассчитываем мощность, рассеиваемую резистором R3, и окончательно выбираем его тип и номинал:


Выбираем резистор МЛТ – 0,125 – 8.2 кОм ± 5%

27. Вычисляем эквивалентное сопротивление коллекторной цепи транзистора VT1 в точке покоя :

28. Оцениваем коэффициент усиления предоконечного каскада:

29. Определяем амплитуду коллекторного тока транзистора VT1

Проверяем выполнение условия Iка1 <IKn1; 0,210мА<1мА.

30. Находим амплитудные значения тока базы и напряжения база-эмиттер транзистора VT1:


31. Вычисляем сопротивление резистора R4 и выбираем его номинальное значение и тип:

Выбираем резистор: R4 - МЛТ – 0,125 – 4.3 кОм ± 5%

32. Рассчитываем сопротивления резисторов R1 и R2; выбирают их тип и номинал

Расчет делителя произведем, задавшись значением : Пусть , тогда: , откуда

33. Определяем ток делителя , а затем рассчитываем мощность рассеивания резисторов  и  и выбираем их тип и номинал.

Выбираем резисторы: R1 - МЛТ – 0,125 – 2 кОм ± 5%

R2 - МЛТ – 0,125 – 47 кОм ± 5%

34. Вычисляем входное сопротивление предоконечного каскада Rex1 в точке покоя:

,

где


35. Рассчитываем фактические коэффициенты усиления по напряжению оконечного Ки2 и предоконечного Ки1 каскадов, учитывая влияние всех элементов схемы:

36. Определяем общий коэффициент усиления усилителя с разомкнутой цепью ООС Ки, сравнивают его с величиной, полученной в п.З, и делают выводы о правильности расчетов:

37. Находим коэффициент передачи у цепи ООС, обеспечивающий заданную глубину обратной связи:

38. Рассчитываем сопротивление резистора обратной связи Roc, используя выражение

, откуда

Выбираем резисторы: RОС - МЛТ – 0,125 – 4.3 МОм ± 5%

Емкость конденсатора Сос выбираем достаточно большой (Сос≈С5)

Сос - К50 - 12 - 50В – 1мкФ

39. Проверяем выполнение условия

R4 + Roc » RН

4300 + 4.3·106 » 460

Для того, чтобы цепь ООС не шунтировала выходной каскад усилителя.

40. Вычисляем входное сопротивление усилителя Rвхoc c замкнутой цепью ООС:

41. Рассчитываем емкости разделительных и эмиттерных конденсаторов: Мв = Мн=1,41

тогда

a

где

Выбираем: конденсаторы С1, С2, С4:

К50 - 12 - 12В – 2мкФ

конденсатор С5:

К50 - 12 - 50В – 1мкФ

42. Определяем значения Сф и Rф

Задаёмся падением напряжения на резисторе RФ на уровне

Выбираем: конденсатор СФ - К50 - 12 - 50В – 20мкФ

резистор: RФ - МЛТ – 0,125 – 1.6 кОм ± 5%

43. Вычисляем полный ток I0, потребляемый усилителем от источника питания:

44. Рассчитываем к.п.д. усилителя:


Информация о работе «Расчёт резисторного усилителя напряжения с RC-связью»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 6373
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
19583
4
0

... РЗИ _____В.И.Ильюшенко ТЕХНИЧЕСКОЕ ЗАДАНИЕ № 2 на курсовое проектирование по дисциплине “Схемотехника АЭУ” студенту гр.180 Курманову Б.А.   1.    Тема проекта Импульсный усилитель 2.    Сопротивление генератора Rг = 75 Ом. 3.    Коэффициент усиления K = 25 дБ. 4.    Длительность импульса 0,5 мкс. 5.    Полярность "положительная". 6.    Скважность 2. 7.    ...

Скачать
20470
0
7

... достаточно низкой стоимостью, что тоже является немаловажным фактором, особенно при массовом монтаже. Составление принципиальной схемы В соответствии с заданием проектируемый автогенератор должен иметь буферный каскад. Буферные каскады используются для согласования параметров различных функциональных блоков в готовом устройстве. В качестве такого каскада я считаю целесообразным использовать ...

Скачать
64964
5
0

... соответствующие требованиям технической. 5 Энерго- и материалосбережение Для эффективного материалосбережения при разработке энергосберегающей системы освещения были применены следующие методы: 1.         Уменьшение размеров печатной платы за счет увеличения плотности компоновки и рационального использование пространства платы, что экономит текстолит, затрачиваемый на изготовление платы. ...

Скачать
32416
5
0

... . 2.1.1 Описание ИМС К174ХА2 К174ХА2 представляет собой полупроводниковую интегральную микросхему 3-й степени интеграции. Она содержит 34 транзистора, 21 диод, и 57 резисторов. Таблица 2.1 Электрические параметры ИМС К174ХА2 Номинальное напряжение питания 9В Ток потребления при UП = 9В, Т = +25°С, не более 16мА Отношение сигнал-шум при UП = 9В, fвх = 1 МГц, ...

0 комментариев


Наверх