2.  Характеристические функции

Характеристические функции являются одним из способов описания случайных величин, удобным при решении многих задач теории вероятностей.

Пусть имеется вещественная случайная величина Х. Введем комплексную случайную величину W по следующему закону:

где .

Характеристической функцией g(t) случайной величины Х называется математическое ожидание случайной величины W, т.е.

Зная закон распределения случайной величины Х, всегда можно найти ее характеристическую функцию g(t).

Для дискретной случайной величины Х с законом распределения

Таблица 1

Х х1 х2 ... хn
Р p1 p2 ... pn

характеристическая функция

Для непрерывной случайной величины с плотностью распределения вероятностей f(x) характеристическая функция

является преобразованием Фурье плотности распределения f(x). С помощью обратного преобразования Фурье можно найти плотность распределения

Для того, чтобы эти формулы можно было применять требуется, чтобы

В качестве примера найдем характеристическую функцию нормированной гауссовсокой случайной величины. Случайная величина Х называется нормированной, если ее числовые характеристики mx=0 и Dx=1. Плотность распределения вероятности нормированной гауссовской случайной величины имеет вид:

По определению имеем


 (2)

После преобразования

и замены в интеграле

z = x – jt

соотношение (2) принимает вид

но так как

то

Таким образом, характеристическая функция с точностью до постоянного множителя совпадает с плотностью распределения.

2.1Свойства характеристической функции

 

1. Характеристическая функция g(t) вещественна тогда и только тогда, когда f(x) – четная функция. Причем g(t) также четна. Это следует из свойств преобразования Фурье.

2.  Если случайные величины Х и Y связаны соотношением

Y = aX,

где а – постоянный множитель, то

gy(t) = gx(at).

Доказательство.

3.  Характеристическая функция суммы независимых случайных величин равна произведению характеристических функций.

Доказательство. Пусть Х1, Х2, ... , Хn- независимые случайные величины с характеристическими функциями gx1(t), gx2(t), ... , gxn(t).

Найдем характеристическую функцию

Имеем:

Так как случайные величины  независимы, то независимы и случайные величины , поэтому

Используя аппарат характеристических функций можно показать, что случайные величины Z = X + Y (Z – носит название композиции), где X, Y независимые случайные величины имеющие биноминальное распределение или распределение Пуассона, или нормальное распределение также подчиняются соответственно биноминальному распределению, закону Пуассона, нормальному закону.


3.  Центральная предельная теорема

Теорема. Если случайные величины Х1, Х2, ... , Хnвзаимно независимы и имеют один итот жезакон распределения f(x) и

то при неограниченном увеличении n закон распределения суммы  неограниченно приближается к нормальному.

Она может быть сформулирована в более общем случае. Закон распределения вероятностей суммы независимых случайных величин одинакового порядка при неограниченном увеличении слагаемых вне зависимости законов распределения слагаемых стремится к нормальному закону с плотностью вероятностей

 

где

Доказательство использует аппарат характеристических функций, представляя  и разлагая функцию gx(t) в ряд Макларена. Далее, делая нормировку случайной величины Yn, т.е. замену  показывается, что


Пример. Складываются 24 независимых случайных величины, каждая из которых подчинена равномерному закону на интервале (0, 1).

 Написать приближенное выражение для плотности суммы этих случайных величин. Найти вероятность того, что сумма будет заключена в пределах от 6 до 8.

Решение. Пусть  где Хi – равномерно распределенные случайные величины. Случайная величина Y удовлетворяет центральной предельной теореме, поэтому ее плотность распределения

Так как Хi – равномерно распределены на интервале (0, 1), то

Следовательно,

Подставим полученные значения в формулу плотности вероятности случайной величины Y:


Значит


Информация о работе «Предельные теоремы. Характеристические функции»
Раздел: Математика
Количество знаков с пробелами: 6903
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
6251
0
0

... и докажу теорему Ляпунова только в частном случае, т.е. для последовательности независимых и одинаково распределенных случайных величин. Центральная предельная теорема. Пусть  —  независимые и одинаково распределенные случайные величины с конечной и ненулевой дисперсией: . Обозначим через сумму первых случайных величин: . Тогда последовательность случайных величин  слабо сходится к ...

Скачать
26640
0
1

... функциям, не выводят нас за пределы этого класса функций. Следующая теорема устанавливает сходный результат относительно уже не арифметической операции – предельного перехода. Теорема 2. Пусть на множестве Е задана последовательность измеримых функций f1(x), f2(x), … Если в каждой точке хЕ существует (конечный или бесконечный) предел F(x)=fn(x), то функция F(х) измерима. Д о к а з а т е л ь с ...

Скачать
100095
5
2

... проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросах билета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях. 1.  Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами. 2.  ...

Скачать
52127
3
1

... математической модели (рас­пределения сумм пуассоновского числа нормально распреде­ленных случайных величин). ЗАКЛЮЧЕНИЕ В данной курсовой работе рассмотрены основные методы прогнозирования экономической среды с учетом фактора старения информации на примере рыночного механизма спрос-предложение. Проанализировав полученную информацию, можно сделать выводы о том, что для различных наук, отраслей ...

0 комментариев


Наверх