РАЗРАБОТКА НЕСТАНДАРТНОГО ОБОРУДОВАНИЯ ЛАБОРАТОРНОЙ УСТАНОВКИ

Разработка лабораторной установки по исследованию каналов утечки речевой информации
Физические характеристики и особенности распространения речевого сигнала Сущность электроакустического канала утечки речевой информации Основные критерии защищенности каналов утечки речевой информации Основные принципы оценки защищенности каналов утечки речевой информации Основные требования, предъявляемые к лабораторной установке РАЗРАБОТКА НЕСТАНДАРТНОГО ОБОРУДОВАНИЯ ЛАБОРАТОРНОЙ УСТАНОВКИ Усилитель мощности с регулятором громкости Подготовительный этап Строится зависимость Рдоп (Рn) по которой можно судить о степени защищенности данного канала; Калибровка и.м.1 в соответствии с шумовым методом исследования акустоэлектрических каналов утечки информации Исследования телефонного аппарата "Телур" Экономическая оценка разработки Затраты на сырье и материалы Затраты на заработную плату Расчет амортизации оборудования Расходы на электроэнергию при эксплуатации оборудования Расчет себестоимости проектирования Внутренняя ставка доходности разработки (IRR) Освещенность Воздействие вибраций Электробезопасность Эргономичность рабочего места Пожарная безопасность
116125
знаков
22
таблицы
32
изображения

3. РАЗРАБОТКА НЕСТАНДАРТНОГО ОБОРУДОВАНИЯ ЛАБОРАТОРНОЙ УСТАНОВКИ

3.1 Определение электрических и акустических параметров экранированной звукопоглощающей камеры

К основным параметрам экранированной звукопоглощающей относятся степень поглощения звуковых колебаний и экранирующая способность в отношении влияния на исследуемые образцы внешних электромагнитных полей.

В качестве камеры принята металлическая камера с габаритами 900´1400´1300 мм

В соответствии с техническим заданием она должна удовлетворять следующим условиям:

-  подавление электрических и магнитных полей 20-40 дБ;

-  подавление звукового давления 20-40 дБ;

-  максимальные габариты камеры 1500´1500´1500 мм

В качестве звукопоглощающего материала принят поролон. Выбор остановим в его пользу в силу незначительной стоимости данного вида звукопоглотителя, распространенности и доступности в продаже. Конечно, можно использовать и другие звукопоглощающие материалы с более высокой степенью поглощения, но во-первых нам не требуется такая качественная звукоизоляция для выполнения санитарных норм в лаборатории, а во-вторых стоимость качественных звукопоглотителей на порядок выше стоимости поролона. При правильной установке поглотителя внутри камеры можно добиться общего уровня звукоизоляции, удовлетворяющего техническому заданию.

Для расчета эффективности экранирования камерой электрических и магнитных полей воспользуемся ориентировочными формулами (3.1) и (3.2) [6]:

, (3.1)

, (3.2)

где ЭЭ и Эм – эффективность экранирования для электрической и магнитной составляющих электромагнитного поля;

ЭПЛ – эффективность экранирования полупространства от падающей плоской волны бесконечным экраном;

l - длина волны;

R – эквивалентный радиус экрана;

, (3.3)

где a, b, c – линейные размеры экрана.

Таким образом, получаем:

. (3.4)

. (3.5)

В качестве экранирующего материала возьмем сталь толщиной 0,5 мм для которого ЭПЛ = 150 дБ на частоте 10 кГц.

Рассчитаем эффективность экранирования:

. (3.6)


. (3.7)

Как видим, камера с такими линейными размерами, выполненная из данного материала пригодна для экранирования внешних электромагнитных полей.

Реальное затухание звукового давления и электромагнитных волн оценим практическим способом.

Конструкция и размеры камеры приведены в приложении 1

3.2 Разработка структурной и функциональной схемы акустического излучателя

При разработке структурной схемы датчика акустического поля требуется выполнить следующие условия технического задания:

·  развиваемое звуковое давление на расстоянии 1 м от излучателя не менее 120 дБ (20 Па).

·  тип генерируемых колебаний:

-  шум с распределением мгновенных значений по нормальному закону с независимой регулировкой уровня в октавных полосах на средне - геометрических частотах 250, 500, 1000, 2000, 4000, 8000 Гц; диапазон регулировки ±20 дБ.

-  гармонические колебания с частотами fср.г. ±15%, где fср.г.=250, 500, 1000, 2000, 4000, 8000 Гц. С независимой регулировкой уровней по частотам в диапазоне ±20 дБ.

Как следует из задания, в качестве первичного источника акустических сигналов необходимо разработать генератор шума с нормальным распределением мгновенных значений, возможно в качестве генератора шума использовать внешние источники: кассетный магнитофон с записью шума, стандартные источники шума. В случае с гармоническими колебаниями воспользуемся обычным генератором низкой частоты (Г3-102, Г3-112, и др.).

Для независимой регулировки уровня в октавных полосах на средне - геометрических частотах 250, 500, 1000, 2000, 4000, 8000 Гц встает вопрос о разработке октавного эквалайзера.

Наконец, для того чтобы развить требуемое звуковое давление, нужно первичный сигнал усилить с помощью усилителя мощности звуковой частоты.

На выходе акустического излучателя стоит акустическая система, которая создает требуемое звуковое давление.

Таким образом, можно выделить структуру акустического излучателя, состоящую из четырех основных блоков:

-  источник первичного сигнала;

-  октавный эквалайзер;

-  усилитель мощности звуковой частоты;

-  акустическая система.

Структурная схема акустического излучателя изображена на рис. 3.1

Рис. 3.1. Структурная схема акустического излучателя.

Разработку функциональной схемы датчика акустического поля начнем с выбора акустической системы. Она должна удовлетворять следующим условиям:

-  диапазон воспроизводимых частот 100 Гц-10000 Гц;

-  развиваемое звуковое давление 20 Па;

-  экранированный точечный излучатель;

Из ряда диффузорных электродинамических громкоговорителей выбираем громкоговоритель 10ГД-36, со следующими основными параметрами:

-  диапазон воспроизводимых частот 63 Гц-20000 Гц;

-  паспортная мощность 15 Вт;

-  номинальное электрическое сопротивление 4 Ом;

-  развиваемое стандартное звуковое давление 0,2 Па;

-  габариты 200´200 мм.

Под точечным понимается излучатель, линейные размеры которого не превышают 10% размеров исследуемой преграды. Данный громкоговоритель удовлетворяет этому условию. Для экранирования электрических и магнитных полей создаваемых магнитной системой громкоговорителя закроем диффузор заземленной мелкоячеистой металлической сеткой.

Звуковое давление PЗВ (Па), развиваемое громкоговорителем, жестко связано с подаваемой на него электрической мощностью W (Вт) (мощность, рассеиваемая на сопротивлении, равном по величине номинальному электрическому сопротивлению громкоговорителя, при напряжении, равном напряжению на зажимах громкоговорителя) и средним стандартным звуковым давлением PСТ (Па) (среднее звуковое давление, развиваемое громкоговорителем в номинальном диапазоне частот на рабочей оси на расстоянии 1 м от рабочего центра при подведении к нему напряжения, соответствующего электрической мощности равной 0,1 Вт) соотношением (3.8).

. (3.8)

Таким образом, чтобы получить звуковое давление 20 Па необходимо к громкоговорителю подвести электрическую мощность:


. (3.9)

Естественно, что приведенные числа являются ориентировочными, так как обусловлены определенными уровнями шума, его спектральными характеристиками, а также заданным стандартным звуковым давлением громкоговорителя. Однако они позволяют выдвинуть максимальные требования к характеристикам усилителя мощности.

Отсюда следует, что необходимо разработать усилитель с выходной мощностью не менее 10 Вт и коэффициентом усиления не менее 50 дБ. Значительный запас мощности, которым обладает усилитель, позволяет получить большой динамический диапазон громкости, что улучшает стабильность работы при номинальной мощности и обеспечивает незначительные нелинейные искажения. Максимальная выходная мощность, которая может быть передана в нагрузку, определяется максимальными значениями напряжения, действующего на выходе усилителя, и тока, протекающего через усилитель при заданной нагрузке.

Для регулировки уровня входного напряжения подаваемого на вход усилителя нужно использовать регулятор громкости.

Для независимой регулировки уровня в октавных полосах на средне - геометрических частотах 250, 500, 1000, 2000, 4000, 8000 Гц встает вопрос о разработке октавного эквалайзера, представляющего собой набор полосовых фильтров с регулировкой уровня на выходе, с последующим суммированием всех полос.

В качестве датчика шума возможно использование как внутреннего, так и внешнего источника. Внешними источниками могут являться стандартный генератор шума, магнитофонная запись с шумом и ряд других устройств.

Для простоты работы и минимизации стандартной аппаратуры необходимо разработать внутренний (встроенный) генератор шума.

При использовании внутреннего генератора шума необходимо, усилить выходной сигнал с генератора, для обеспечения нормальной работы октавного эквалайзера и достижения нужного коэффициента усиления.

Учитывая сказанное выше, функциональная схема акустического излучателя имеет вид представленный на рис. 3.2.

Рис. 3.2. Функциональная схема акустического излучателя.

3.3.Разработка принципиальной схемы акустического излучателя


Информация о работе «Разработка лабораторной установки по исследованию каналов утечки речевой информации»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 116125
Количество таблиц: 22
Количество изображений: 32

Похожие работы

Скачать
116603
2
19

... , с целью оценки состояния обеспечения безопасности информации; - управление допуском участников совещания в помещение; - организация наблюдения за входом в выделенное помещение и окружающей обстановкой в ходе проведения совещания. 2. основными средствами обеспечения защиты акустической информации при проведении совещания являются: - установка различных генераторов шума, мониторинг помещения на ...

Скачать
310716
12
0

... -текущих планов мероприятий – до исполнения. -перспективных планов мероприятий – 5 лет. Выводы по разделу 1. В первом разделе были рассмотрены теоретические основы управления качеством, являющимися базовыми при разработке системы управления качеством. Был затронут международный опыт данной деятельности. При работе над первым разделом была рассмотрена и представлена в разделе, процедура получения ...

Скачать
57155
1
2

... сигнал на когерентность, исключает случайные, побочные результаты измерений без потери чувствительности частотомера. Анализаторы спектра Этот уже достаточно развитый, но еще перспективный вид средств радиоконтроля предназначен для сканирования частотных спектров модулированных сигналов в различных частотных диапазонах и отображения на экране дисплея/осциллографа этих спектров. В случае, ...

Скачать
113599
3
11

... информации и дезорганизации работы абонентских пунктов; - организационно-технические мероприятия, направленные на обеспечение сохранности конфиденциальных данных. 2. Основные методы и средства защиты информации в сетях Разобрать подробно все методы и средства защиты информации в рамках ВКР просто невозможно. Охарактеризую только некоторые из них. 2.1 Физическая защита информации К ...

0 комментариев


Наверх