МПа. Области применения высокопрочных ситаллов -ракето- и авиастроение (обтекатели антенн), радиоэлектроника

39511
знаков
0
таблиц
7
изображений
1370 МПа. Области применения высокопрочных ситаллов -ракето- и авиастроение (обтекатели антенн), радиоэлектроника.

Оптически прозрачные термостойкие и радиопрозрачные химически стойкие ситаллы получают на основе стекол системы Li2О - А12О3 - SiO2 (сподумено-эвкриптитовые составы); инициатор кристаллизации -ТiO2. В оптически прозрачных ситаллах размер кристаллов не превышает длины полуволны видимого света. Ситаллы, содержащие в качестве основных кристаллических фаз эвкриптит (Li2O·Al2O3·2SiO2) или сподумен (Li2О · Аl2О4·4SiO2), имеют, кроме того, температурные коэффициент. расширения, близкие к нулю, и иногда даже отрицательные- до -5·10-6 К-1. Области применения -космическая и лазерная техника, астрооптика. Введение в состав таких ситаллов активаторов люминесценции и специальных добавок позволяет применять их в солнечных батареях.

Износостойкие и химически стойкие ситаллы получают на основе стекол CaO-MgO-SiO2 (пироксеновые составы); инициаторы кристаллизации- фторид или оксид хрома. Отличаются высокой износостойкостью (истираемость 0,001 г/см2) и стойкостью в различных химических средах. Применяются в текстильной, химической, автомобильной промышленности, буровой и горнодобывающей технике.

Фотоситаллы обычно получают на основе стекол системы Li2O-Al2O3-SiO2 со светочувствительными добавками (соединения Аи, Ag, Сu), которые под действием УФ облучения и дальнейшей тепловой обработки стекла способствуют его избирательной кристаллизации. Находят применение в микроэлектронике, ракетной и космической технике, оптике, полиграфии как светочувствительные материалы (например для изготовления оптических печатных плат, в качестве светофильтров).

Слюдоситаллы получают на основе стекол системы MgO-Al2O3-SiO2-K2O-F (фторфлогопитовые, фтор-рихтеритовые, фторамфиболовые составы). Сочетают высокие механияеские и электрические. свойства с хорошей механической. обрабатываемостью- их можно резать, сверлить, фрезеровать, шлифовать. Применяются в машиностроении для изготовления деталей, подвергающихся трению и износу, а также в качестве материала для деталей сложной конфигурации.

Дифситаллы получают обычно на основе стекол системы СаО - MgO - SiO2 - Р2О5 (апатито- волластонитовые составы). Высокая механическая прочность, биологическая совместимость с тканями организма позволяют использовать их в медицине для зубных и костных протезов.

Ситаллоцементы, получаемые на основе стекол системы PbO- ZnO- В2О3 - SiO2, имеют очень низкий коэффициент теплового расширения (4-10) · 10-6 К-1; применяются для спаивания стеклодеталей цветных кинескопов и электроннолучевых трубок, герметизации полупроводниковых приборов, в производстве жидкокристаллических индикаторов, в микроэлектронике. Перспективно также использование таких ситаллов в качестве стеклокристаллических покрытий (стеклоэмалей), наносимых на поверхность различных металлов (W, Mo, Nb, Та, их сплавов, различных видов стали) с целью защиты их от коррозии, окисления и износа при обычных и повышенных температурах. Отличаются повышенной термо- и жаростойкостью, устойчивостью к истиранию, высокой механической и электрической прочностью. Применяются в качестве покрытий для деталей дизелей, газотурбинных установок, атомных реакторов, авиационных приборов, электронагревательных элементов.

Ситаллы со специальными электрическими свойствами получают на основе стекол систем ВаО-Аl2О3-SiO2-ТiO2 и Nb2O5-CoO-Na2O--SiO2. Характеризуются высокой диэлектрической проницаемостью (e 240-1370) и низким коэффициентом диэлектрических потерь (1,5-3,2). Используются для изготовления низкочастотных конденсаторов большой емкости, пьезоэлементов и др. Разработаны полупроводниковые, ферромагнитные, ферро-электрические, сегнетоэлектрические С. с различным сочетанием электрических свойств. Ситаллы на основе стекол системы MgO-Al2O3-SiO2 имеют очень низкий tg d (3 · 10-4 при 25 °С и 104 МГц), ситаллы на основе метаниобата Рb- высокую диэлектрическую проницаемость (e 1000-2000). На основе стекол B2O3-BaO-Fe2O3 получены С. с одно- и многодоменной структурой с размером доменов ~ 500 им.

К группе строительных ситаллов относят шлако-, золо-, петроситаллы, получаемые с использованием шлаков черной и цветной металлургии, зол, горных пород. В зависимости от химического состава используемых отходов, определяющих вид доминирующей кристаллической фазы, подразделяются на волластонитовые, пироксеновые (инициаторы кристаллизации-оксиды Cr, Ti, Fe, фториды), мелилитовые (система CaO-MgO-2Al2O3-SiO2, инициатор кристаллизации--оксид Сr), пироксен-авгитовые и геденбергитовые (система СаО - MgO - Fe2 О3 - Аl2 р3 - SiO2), форстеритовые (система CaO-MgO-SiO2) и эгириновые (Na2O--Fe2O3-SiO2) С. Они имеют высокие прочностные характеристики (sизг 100-180 МПа), высокую микротвердость (8500-9000 МПа), относительно низкую истираемость (0,05 г/см2), высокую стойкость к хим. и термин, воздействиям. Применяются в строительстве, горнодобывающей, химической и др. отраслях промышленности.

Получают ситаллы и изделия из них главным образом с использованием стекольной и керамической технологии, иногда по химическому способу. Наиболее распространена так называемая стекольная технология, включающая варку стекла из шихты. формование изделий (прессование, прокатка, центробежное литье) и термическую обработку. Последняя стадия обеспечивает кристаллизацию стекла вследствие введения в стекольную массу специальных инициаторов- каталитических добавок - оксидов Ti, Сг, Ni, Fe, фторидов, сульфидов, металлов платиновой группы, а также вследствие склонности стекол к ликвации, способствующей образованию поверхности раздела фаз и приближающей химический состав микрообластей к составу будущих кристаллов. Термическую обработку осуществляют обычно по двухступенчатому режиму; температура первой ступени лежит в области температуры размягчения стекла и соответствует максимальной скорости зарождения центров кристаллизации, при т-ре второй ступени происходит выделение кристаллов ведущей фазы, определяющей основные свойства ситаллов.

По керамической (порошковой) технологии получения ситаллы из расплава стекла вначале получают гранулят, который измельчают и сушат, после чего в него добавляют термопластическую связку и из образовавшейся массы прессованием или шликерным литьем формуют изделия. Затем их спекают при высокой температуре с одновременной кристаллизацией. По сравнению с керамикой аналогичного состава спеченные ситаллы характеризуются более низкими температурами обжига и расширенным интервалом спекания. Порошковая технология позволяет получать из ситаллов термически стойкие изделия сложной конфигурации и малых размеров.

По химическому способу ситаллы получают главным образом по золь-гель технологии, в основе которой лежит низкотемпературный синтез (посредством реакций гидролиза и конденсации) металлоорганические соединения элементов, составляющих стекло, при температуре ниже температуры плавления стекольной шихты. Этот метод позволяет получать ситаллы на основе составов, не склонных к стеклообразованию, обеспечивает получение стекол высокой чистоты и однородности, что резко улучшает свойства ситаллов, синтезируемых на их основе.

 

ЧУГУН

 

Чугуны — это железоуглеродистые сплавы, содержащие более 2 % углерода и затвердевающие с образованием эвтектики. В отличие от стали чугуны обладают низкой пластичностью. Однако, благодаря высоким литейным свойствам, достаточной прочности и относительной дешевизне, чугуны нашли широкое применение в машиностроении.

Чугуны выплавляют в доменных печах, вагранках и электропечах. Выплавляемые в доменных печах чугуны бывают передельными, специальными (ферросплавы) и литейными. Передельные и специальные чугуны используются для последующей выплавки стали и чугуна. В вагранках и электропечах переплавляют литейные чугуны. Около 20 % всех выплавляемых чугунов используют для изготовления отливок.

КЛАССИФИКАЦИЯ ЧУГУНОВ

 

Литейные и механические свойства чугуна зависят от того, насколько близок его состав к эвтектическому. Для оценки этого применяют два показателя:

Степень эвтектичности SЭ — отношение концентрации углерода С в чугуне к его концентрации в эвтектике с учетом влияния кремния и фосфора:


где 4,26 — концентрация углерода в эвтектике системы «железо—графит» (см. рис. 7.1.), Si и P — содержание этих элементов в чугуне, %.

Углеродный эквивалент определяется как:

Сэк = С + 0,3(Si + P)

Чугуны подразделяются на: доэвтектические (Sэ < 1, Cэв < 4,2–4,3), эвтектические (Sэ 1, Сэк4,2–4,3) и заэвтектические (Sэ > 1, Cэв > 4,2–4,3).

Чугуны при кристаллизации и дальнейшем охлаждении могут вести себя по-разному (рис. 1): либо в соответствии с метастабильной диаграммой состояний Fe—Fe3C (белые чугуны, в которых углерод присутствует в виде Fe3C), либо в соответствии со стабильной диаграммой Fe—C (серые чугуны, в которых углерод присутствует в виде графита).

На представленных диаграммах (рис.1) кроме общих линий АС, АЕ, GS остальные линии не совпадают. В системе Fe—C графитная эвтектика (аустенит—графит) содержит 4,26 % С и образуется при 1 153 ° С. По линии E'S' в интервале температур 1 153–738 ° С выделяется вторичный графит. Эвтектоидное превращение протекает при 738 ° С с образованием эвтектоида (феррит + графит). Пользование диаграммами Fe—C и Fe—Fe3C принципиально не отличается друг от друга.

Вероятность образования цементита из жидкой фазы значительно выше, чем графита. Любой процесс определяется термодинамическими и кинетическими условиями протекания. Движущей силой процесса графитизации является стремление системы уменьшить запас свободной энергии. Цементит термодинамически менее устойчивая фаза, чем графит. Однако разница между температурами образования цементита и графита невелика, и при сравнительно небольшом переохлаждении будет происходить кристаллизация цементита, а не графита.

Графит образуется только при малых скоростях охлаждения в узком интервале температур, когда мала степень переохлаждения жидкой фазы. При ускоренном охлаждении и при переохлаждении жидкого чугуна ниже 1 147 ° С происходит образование цементита.

Графитизация чугунов

Графитизацией называется процесс выделения графита при кристаллизации или охлаждении чугунов. Графит может образовываться как из жидкой фазы при кристаллизации, так и из твердой фазы. В соответствии с диаграммой Fe—C ниже линии C'D' образуется первичный графит, по линии E'C'F' — эвтектический графит, по линии Е'S' — вторичный графит и по линии P'S'К'— эвтектоидный графит.

Графитизация чугуна и ее полнота зависит от скорости охлаждения, химического состава и наличия центров графитизации.

Влияние скорости охлаждения обусловлено тем, что графитизация чугуна протекает очень медленно и включает несколько стадий:

·  бразование центров графитизации в жидкой фазе или аустените;

·  диффузия атомов углерода к центрам графитизации;

·  рост выделения графита.

При графитизации цементита добавляются стадии предварительного распада Fe3C и растворение углерода в аустените. Чем медленнее охлаждение чугуна, тем большее развитие получает процесс графитизации.

В зависимости от степени графитизации различают чугуны белые, серые и половинчатые.

Белые чугуны — получаются при ускоренном охлаждении и при переохлаждении жидкого чугуна ниже 1 147 °С, когда в силу структурных и кинетических особенностей будет образовываться метастабильная фаза Fe3C, а не графит. Белые чугуны, содержащие связанный углерод в виде Fe3C, отличаются высокой твердостью, хрупкостью и очень трудно обрабатываются резанием. Поэтому они как конструкционный материал не применяются, а используются для получения ковкого чугуна путем графитизирующего отжига.

Серые чугуны — образуются только при малых скоростях охлаждения в узком интервале температур, когда мала степень переохлаждения жидкой фазы. В этих условиях весь углерод или его большая часть графитизируется в виде пластинчатого графита, а содержание углерода в виде цементита составляет не более 0,8 %. У серых чугунов хорошие технологические и прочностные свойства, что определяет широкое применение их как конструкционного материала.

Половинчатые чугуны — занимают промежуточное положение между белыми и серыми чугунами, и в них основное количество углерода (более 0,8 %) находится в виде Fe3C. Чугун имеет структуру перлита, ледебурита и пластинчатого графита.

Промышленные чугуны содержат 2,0–4,5 % С, 1,0–3,5 % Si, 0,5–1,0 % Mn, до 03 % Р и до 0,2 % S. Наиболее сильное положительное влияние на графитизацию оказывает кремний. Меняя содержание кремния, можно получать чугуны с различной структурой и свойствами. Структурная диаграмма (рис. 2) приближенно указывает границы структурных областей в зависимости от содержания кремния и углерода при содержании 0,5 % Mn и заданной скорости охлаждения (при толщине стенки отливки 50 мм).

Марганец препятствует графитизации, увеличивая склонность чугуна к отбеливанию. Сера является вредной примесью. Ее отбеливающее влияние в 5–6 раз выше, чем марганца. Кроме того, сера снижает жидкотекучесть, способствует образованию газовых пузырей, увеличивает усадку и склонность к образованию трещин. Фосфор не влияет на графитизацию и является полезной примесью, увеличивая жидкотекучесть серого чугуна за счет образования легкоплавкой (950–980) ° С фосфидной эвтектики.

Рис. 2. Структурная диаграмма: 1 — белые чугуны; 2 — половинчатые чугуны; 3, 4, 5 — серые чугуны на перлитной, феррито-перлитной и ферритной основе соответственно

Таким образом, регулируя химический состав и скорость охлаждения можно получать в отливках нужную структуру чугуна.

Классификация серых чугунов

Серый чугун можно рассматривать как структуру, которая состоит из металлической основы с графитными включениями. Свойства чугуна зависят от свойств металлической основы и характера графитных включений.

Металлическая основа может быть: перлитной, когда 0,8 % С находится в виде цементита, а остальной углерод в виде графита; феррито-перлитной, когда количество углерода в виде цементита менее 0,8 % С; ферритной, когда углерод находится практически в виде графита.

В зависимости от формы графитных включений серые чугуны классифицируются на:

·  чугун с пластинчатым графитом;

·  чугун с хлопьевидным графитом (ковкий чугун);

·  чугун с шаровидным графитом (высокопрочный чугун);

·  чугун с вермикулярным графитом.

На рис.3 дана обобщенная классификация чугунов по строению металлической основы и форме графита.

Микроструктура чугунов приведена на рис. 7.4.

Рис. 3. Классификация чугунов по структуре металлической основы и в форме графитовых включений

 

Рис. 4. Различные формы графита в чугуне: а) пластинчатый графит; б) хлопьевидный графит; в) шаровидный графит; г) вермикулярный графит. × 200

 

По сравнению с металлической основой графит имеет низкую прочность. Поэтому графитовые включения можно считать нарушениями сплошности (пустотами) в металлической основе, и чугун можно рассматривать, как сталь, пронизанную включениями графита, ослабляющими его металлическую основу. Вместе с тем наличие графита определяет и ряд преимуществ чугуна: хорошая жидкотекучесть и малая усадка; хорошая обрабатываемость резанием (графит делает стружку ломкой); высокие демпфирующие свойства; антифрикционные свойства и др.

В отдельную группу при классификации выделены чугуны со специальными свойствами. Как правило, эти чугуны легированные и делятся по назначению на следующие виды: антифрикционные, износостойкие, жаростойкие, коррозионностойкие, жаропрочные.

Маркировка чугунов

 

По принятой в СССР маркировке обозначения марок доменных чугунов содержат буквы и цифры. Буквы указывают основное назначение чугуна: П - передельный для кислородно-конверторного и мартеновского производства и Л - литейный для чугунолитейного производства. Литейный коксовый чугун обозначают ЛК, в отличие от чугуна, выплавленного на древесном угле (ЛД). С увеличением числа в обозначении марки уменьшается содержание кремния (например, в чугуне ЛК5 содержится меньше кремния, чем в чугуне ЛК4). Каждая марка чугуна в зависимости от содержания Mn, Р, S подразделяется соответственно на группы, классы и категории.

 Марки чугуна литейного производства, как правило, обозначаются буквами, показывающими основной характер или назначение чугуна: СЧ - серый Ч., ВЧ - высокопрочный, КЧ - ковкий; для антифрикционного чугуна в начале марки указывается буква А (АСЧ, АВЧ, АКЧ). Цифры в обозначении марок нелегированного чугуна указывают его механические свойства. Для серых чугунов приводят регламентированные показатели пределов прочности при растяжении и изгибе (в кгс/мм2), например СЧ21-40,СЧ 15, CЧ 20, СЧ 35.

Для высокопрочного и ковкого чугуна цифры определяют предел прочности при растяжении (в кгс/мм2) и относительное удлинение (в %), например ВЧ60-2. Обозначение марок легированных чугунов состоит из букв, указывающих, какие легирующие элементы входят в состав чугуна , и стоящих непосредственно за каждой буквой цифр, характеризующих среднее содержание данного легирующего элемента; при содержании легирующего элемента менее 1,0% цифры за соответствующей буквой не ставятся. Условное обозначение химических элементов такое же, как и при обозначении сталей. Пример обозначения легированных чугунов: ЧН19ХЗ – чугун, содержащий ~19% Ni и ~3% Cr. Если в легированном чугуне регламентируется шаровидная форма графита, в конце марки добавляется буква Ш (ЧН19ХЗШ).


Библиографический список

1. Соколов Р. С. «Химическая технология», 2003 г.;

2. Макмиллан П.У. «Стеклокерамика», 1967 г.;

3. Павлушкин Н.М. «Основы технологии ситаллов», 1970 г.;

4. Гиршович Н.Г. «Чугунное литьё», 1949 г.;

5. Дриц М.Е., Москалев М.А. «Технология конструкционных материалов и материаловедение», 1990 г.;

6. Для подготовки данной работы были использованы материалы с сайтов:

http://www.orbeta.ru/stati/chugunyi.html

http://ru.wikipedia.org

http://www.krugosvet.ru


Информация о работе «Свойства конструкционных материалов»
Раздел: Промышленность, производство
Количество знаков с пробелами: 39511
Количество таблиц: 0
Количество изображений: 7

Похожие работы

Скачать
28242
1
7

... свойствах конструкционных материалов. Основные методы обработки конструкционных материалов: литье, обработка давлением, сварка и обработка резанием. Эти методы в современной технологии конструкционных материалов характеризуется многообразием традиционных и новых технологических процессов, возникающих на их слиянии и взаимопроникновении. 1. Холодное деформирование Обычно под холодной штамповкой ...

Скачать
59941
0
0

... способность стали к вытяжке. Поэтому для холодной штамповки более широко используют холоднокатаные кипящие стали 08кп, 08Фкп (0.02-0.04% V) и 08Ю (0.02-0.07% Al). Конструкционные (машиностроительные) цементируемые (нитроцементуемые) легированные стали Для изготовления деталей, упрочняемых цементацией, применяют низкоуглеродистые (0.15-0.25% С) стали. Содержание легирующих элементов в сталях ...

Скачать
13321
0
0

... полимерных материалов при нормальных и повышенных температурах и др.; показатели экономической эффективности (стоимость, трудоёмкость, дефицитность, коэффициент использования металла и т.п.). Примеры конструкционных материалов, применяемых в судостроении Магналии Сплавы Al – Mg. Сплавы алюминий с магнием имеют низкие литейные свойства, так как не содержат эвтектики. Характерной особенностью этих ...

Скачать
23272
0
0

... с целью улучшения ее служебных и технологических свойств, то такую сталь называют легированной. При легировании могут возникать новые свойства, не присущие углеродистым сталям.Классификация конструкционных сталей Стали классифицируют по химическому составу, качеству, степени раскисления, структуре, прочности и назначению.По химическому составу стали классифицируют на углеродистые и легированные. ...

0 комментариев


Наверх