1.4 Устройство выборки-хранения Sample and Hold

Атрибут PART: <имя>

Описание: Описание: Sample and HoldАтрибут INPUT EXPRESSION: <функция>

Атрибут SAMPLE EXPRESSION: [<логическое выражение>]

Атрибут PERIOD: <значение>

Устройство выборки хранения представляет собой аналоговое запоминающее устройство, которое запоминает аналоговый сигнал в заданные моменты времени и хранит это значение в течение определенного времени, равного периоду дискретизации.

В поле атрибута INPUT EXPRESSION вносится функция напряжений, токов и (возможно) времени, которая будет обрабатываться устройством выборки-хранения.

В поле атрибута SAMPLE EXPRESSION вносится логическое выражение, при выполнении которого (истинности значения), устройство осуществляет отслеживание входной функции (повторяет во времени функцию, заданную в поле INPUT EXPRESSION). При невыполнении этого логического выражения, на выходе устройства — значение, запомненное в момент времени перехода логического выражения из истинного в ложное состояние. Таким образом, при задании поля SAMPLE EXPRESSION момент перехода логического выражения из ложного в истинное — это поступление команды на выборку (слежение) за входной функцией; а момент перехода из истинного в ложное — это поступление команды на хранение. В этом случае значение, указанное в поле PERIOD игнорируется.

В поле атрибута PERIOD указывается интервал времени, через который будут производиться выборки сигнала. На это же время происходит и запоминание выборки. Значение этого атрибута принимается во внимание при анализе, если поле атрибута SAMPLE EXPRESSION не заполнено. Примеры работы устройства выборки-хранения см. в схемных файлах SAMPLE AND HOLD_01… SAMPLE AND HOLD_04 из каталога COMPONENTS\MISC.

1.5 Стрелки (Arrow) и контакты (Bubble)

Описание: Описание: Arrow_bubble

Если в графе Definition редактора компонентов Component Editor выбран тип Blank (пустой), то компонент такого типа не имеет электрических свойств, не участвует в моделировании и предназначен лишь для нанесения на схему дополнительной информации. К таким компонентам относится Arrow — стрелка, указывающая, в частности, направление тока, и Bubble — контакт, помеченный текстовой меткой.


2 Многовариантный анализ

В меню трех видов анализа Transient, AC и DC имеется диалоговое окно Stepping (вызывается также нажатием пиктограммы Описание: Описание: Пикт_Analysis), с помощью которого производится вариация от одного до 20 параметров. В нем (см. рис. 2) содержатся следующие строки.

Step What — на верхней строке указывается имя компонента и имя его варьируемого параметра. Содержание этой строки зависит от выбранного ниже типа параметра: Component, Model или Symbol.

Parameter Type — тип вариации параметров. Если выбран тип Component, то нажатие на кнопку Описание: Описание: Пикт_список в первой строке открывает список имен компонентов, содержащихся в схеме, например, С1, С2, СЗ, D1, L1, R1, V2, V3. Если в этом списке выбрать простой компонент, имеющий единственный параметр, например конденсатор, то справа на первой строке появится стандартное имя Value (обозначающее значение параметра). Если же выбранный компонент имеет модель или макромодель (описываемую по директивам .MODEL или .SUBCKT), то справа на первой строке нужно выбрать имя ее параметра.

Причем если компонент входит в состав макромодели, то используется составное имя: сначала указывается имя макромодели, затем после десятичной точки имя входящего в нее компонента, например X1.D13, X2.DIN555. Причем если в окне Global Settings включены опции PRIVATEANALOG и PRIVATEDIGITAL, то варьироваться будут только параметры индивидуально выбранного компонента; параметры других компонентов, имеющих те же модели, варьироваться не будут. При выключении этих опций варьироваться будут параметры всех компонентов, имеющих ту же модель. При вариации параметров моделей все подобные модели, содержащие параметр АКО, варьироваться не будут и вариация температур T_MEASURED, T_ABS, T_REL_GLOBAL, T_REL_LOCAL недоступна;

Описание: Описание: Stepping_01

Рис. 2. Варьирование параметров компонентов и их моделей

Если выбран тип Model, то нажатие на кнопку Описание: Описание: Пикт_список в первой строке открывает список имен моделей, и справа на первой строке нужно выбрать имя варьируемого параметра выбранной модели. Например, в первой строке слева можно указать тип модели NPN $GENERIC_N (n-p-n транзистор), а справа — имя одного из его параметров, например CJC (емкость коллекторного перехода). По этому способу варьируются параметры всех компонентов, имеющих выбранную модель. Так в данном примере варьируются параметры CJC всех транзисторов, имеющих модель $GENERIC_N.

Если выбран тип Symbolic, то становится доступен список параметров, определенных по директиве .define.

From — начальное значение параметра. При выборе логарифмической шкалы оно должно быть больше нуля.

То — конечное значение параметра. При выборе логарифмической шкалы оно должно быть больше нуля.

Step Value — величина шага параметра. При линейной шкале она прибавляется к начальному значению, а при логарифмической шкале умножается на текущее значение параметра.

Step It — включение режима вариации параметров (Yes) или его выключение (No).

Method — характер изменения варьируемого параметра:

Linear — линейная шкала;

Log — логарифмическая шкала;

List — список значений.

Change — метод изменения нескольких параметров:

Step all variables simultaneously — одновременное изменение всех варьируемых параметров, в этом случае количества вариаций всех параметров должны быть равны между собой

Step variables in nested loops — поочередное (вложенное) изменение варьируемых параметров, в этом случае во внешнем цикле изменяется переменная на 1-ой закладке.

Перед выполнением вариации параметров рекомендуется убедиться, что моделирование выполняется без ошибок при номинальном значении параметров. Одновременная вариация параметров в режиме Stepping и статистический анализ по методу Монте-Карло невозможен.

Пример многовариантного расчета частотных характеристик усилительного каскада при вариации параметра модели транзистора BF приведен на рис. 4.17.

Ограничения на вариации параметров: нельзя варьировать параметры компонентов Transformer, User source, Laplace source, Function source, зависимых источников SPICE (типа E, F, G и Н).

В заключение отметим, что графики, полученные путем многовариантного анализа можно пометить, чтобы знать какому значению варьируемого параметра соответствует каждая кривая. Осуществляется это с помощью команды SCOPE/Label Branches.



Информация о работе «Особенности работы в программном пакете MicroCAP-7»
Раздел: Информатика, программирование
Количество знаков с пробелами: 25332
Количество таблиц: 1
Количество изображений: 8

Похожие работы

Скачать
21633
7
8

... катушек индуктивности, расположенных на линейном сердечнике (K). Еще один способ задания трансформатора — в виде схемы–макромодели, содержащей магнитосвязанные индуктивности. Так в программном пакете имеется встроенная модель двухобмоточного трансформатора со средней точкой Component/Analog Primitives/Macros/Centap. Все 3 способa задания трансформатора в схеме для моделирования иллюстрирует ...

Скачать
18936
0
5

... Breakpoints, 3D Windows, Reduce Data Points. Состав этих команд приблизительно одинаков для всех видов анализа, смысл их ясен из названия, а назначение и результат выполнения определяются самостоятельно при углубленном изучении программного пакета.   2.  Расчет режима по постоянному току (Dynamic DC —Alt+4) По команде Analysis/Dynamic DC производится расчет режима по постоянному току и его ...

Скачать
28181
2
0

... параметром Analysis Plot Tags на закладке Format окна Preferences.  Text Mode — ввод текста (в абсолютных и относительных координатах).   Properties (F10) — просмотр и редактирование свойств объектов. 2.  Панорамирование окна результатов моделирования Панорамированием называется перемещение окна без изменения масштаба изображения. Оно выполняется с помощью клавиатуры или мыши. Клавиатура. ...

Скачать
58179
1
19

... графики переходных процессов, заданных для анализа величин (напряжений в узлах схемы, падений напряжений на двухполюсных элементах, токов в ветвях схемы и т.п.). На рис. 2 показан результат моделирования переходных процессов в пассивной линейной цепи второго порядка, электрическая схема которой приведена в правом окне. Рис. 2 В окно анализа выведены следующие графики: V(1) – импульсный ...

0 комментариев


Наверх