11. Аэробная очистка сточных вод в природных условиях. Методы. Сооружения.

Биологический пруд - водоем для биологической очистки сточных вод в естественных условиях. Биологические пруды надлежит применять для очистки и глубокой очистки городских, производственных и поверхностных сточных вод, содержащих органические вещества.

Биологические пруды допускается проектировать как с естественной, так и с искусственной аэрацией (пневматической или механической). Биологические пруды следует устраивать на нефильтрующих или слабофильтрующих грунтах. При неблагоприятных в фильтрационном отношении грунтах следует осуществлять противофильтрационные мероприятия. Биологические пруды следует располагать с подветренной по отношению к жилой застройке стороны господствующего направления ветра в теплое время года. Направление движения воды в пруде должно быть перпендикулярным этому направлению ветра.

Биологические пруды следует проектировать не менее чем из двух параллельных секций с 3-5 последовательными ступенями в каждой, с возможностью отключения любой секции пруда для чистки или профилактического ремонта без нарушения работы остальных.

При обеззараживании сточных вод после биологических прудов следует выделять отсек для контакта сточной воды с хлором.

Первая серия прудов предназначена для осаждения сточных вод. На этой стадии в ходе анаэробных процессов разложения образуется биогаз (смесь метана, диоксида углерода, аммиака и других газов). Биогаз является вполне пригодным топливом для двигателей и газовых плит. Биогаз, уходящий в атмосферу, загрязняет воздух и способствует «парниковому эффекту» (нагревание! атмосферы земли, способное изменить климат планеты). Исходя из этих соображений, биогаз, образующийся при первичном разложении сточных вод, следует собирать и использовать.

Вторая серия прудов имеет смешанный характер: у дна продолжаются анаэробные процессы, .а верхние слои воды, взаимодействующие с воздухом, подвергаются аэрации.

Последняя серия прудов — аэрационные — превышает по площади две предыдущие. Вода имеет зеленоватый цвет, поскольку в ней множество одноклеточных водорослей.

Пруды обычно располагают по рельефу таким образом, чтобы вода перетекала из одной серии прудов в другую самотеком. Пруды устраивают глубиной около 1 м: при большей глубине снижается биологическая эффективность активного ила в прудах-отстойниках, а в аэробных прудах снижается аэрационный эффект от контакта с воздухом.

Схема

Рис. 1. Схема биологической обработки стоков: 1 — механический фильтр; 2 — солнечный коллектор для подогрева воды; 3 — биореактор; 4 — компрессор для сжатия биогаза; 5 — каналы выращивания водорослей; 6 — фильтр для сбора водорослей; 7…9 — аэробные пруды; 10 — ручей проложенный через осоковый луг


Технические характеристики

При очистке в биологических прудах сточные воды не должны иметь БПКполн свыше 200 мг/л-для прудов с естественной аэрацией и свыше 500 мг/л-для прудов с искусственной аэрацией.

При БПКполн свыше 500 мг/л следует предусматривать предварительную очистку сточных вод.

В пруды для глубокой очистки допускается направлять сточную воду после биологической или физико-химической очистки с БПКполн не более 25 мг/л-для прудов с естественной аэрацией и не более 50 мг/л-для прудов с искусственной аэрацией.

Перед прудами для очистки надлежит предусматривать решетки с прозорами не более 16 мм и отстаивание сточных вод в течение не менее 30 мин.

После прудов с искусственной аэрацией необходимо предусматривать отстаивание очищенной воды в течение 2-2,5 ч.

Отношение длины к ширине пруда с естественной аэрацией должно быть не менее 20. При меньших отношениях надлежит предусматривать конструкции впускных и выпускных устройств, обеспечивающие движение воды по всему живому сечению пруда.

В прудах с искусственной аэрацией отношение сторон секций может быть любым, при этом аэрирующие устройства должны обеспечивать движение воды в любой точке пруда со скоростью не менее 0,05 м/с. Форма прудов в плане зависит от типа аэраторов: для пневматических или механических прудов могут быть прямоугольными, для самодвижущихся механических-круглыми.

Отметка лотка перепускной трубы из одной ступени в другую должна быть выше дна на 0,3-0,5 м.

Выпуск очищенной воды следует осуществлять через сборное устройство, расположенное ниже уровня воды на 0,15-0,2 глубины пруда.

Хлорировать воду следует, как правило, после прудов. В отдельных случаях (при длине прокладки трубопровода хлорной воды свыше 500 м или необходимости строительства отдельной хлораторной и т. п.) допускается хлорирование перед прудами.

Концентрация остаточного хлора в воде после контакта не должна превышать 0,25-0,5 г/м3.

Количество осадка, выпадающего в контактных резервуарах, следует принимать, л на 1 м3 сточной воды, при влажности 98 %: после биологической очистки в аэротенках и на биофильтрах-0,5.

Расчет

Рабочий объем пруда надлежит определять по времени пребывания в нем среднесуточного расхода сточных вод.

Время пребывания воды в пруде с естественной аэрацией tlag , сут, следует определять по формуле

СНиП 2.04.03-85 (69)

где N - число последовательных ступеней пруда;

Klag -коэффициент объемного использования каждой ступени пруда;

Klag -то же, последней ступени;

Klog и Klog   принимаются для искусственных прудов с отношением длины секций к ширине 20:1 и более-0,8-0,9, при отношении 1:1-3:1 или для прудов, построенных на основе естественных местных водоемов (озер, запруд и т. п.),-0,35, для промежуточных случаев определяются интерполяцией;

Len -БПКполн воды, поступающей в данную ступень пруда;

Len -то же, для последней ступени;

Lex - БПКполн воды, выходящей из данной ступени пруда;

Lex -то же, для последней ступени;

Lfin -остаточная БПКполн, обусловленная внутриводоемными процессами и принимаемая летом 2-3 мг/л (для цветущих прудов-до 5 мг/л), зимой-1-2 мг/л;

k -константа скорости потребления кислорода, сут; для производственных сточных вод устанавливается экспериментальным путем; для городских и близких к ним по составу производственных сточных вод при отсутствии экспериментальных данных k для всех промежуточных секций очистного пруда может быть принята равной 0,1 сут-1, для последней ступени k = 0,07 сут-1 (при температуре воды 20 °С).

Для прудов глубокой очистки k следует принимать, сут-1: для 1-й ступени-0,07; для 2-й ступени-0,06; для остальных ступеней пруда-0,05-0,04; для одноступенчатого пруда k = 0,06 сут-1.

Для температур воды, отличающихся от 20 °С, значение k должно быть скорректировано по формулам:

для температуры воды от 5 до 30 °С

СНиП 2.04.03-85 (70)

для температуры воды от 0 до 5 °С

СНиП 2.04.03-85 (71)

где k -коэффициент, определяемый в лабораторных условиях при температуре воды 20 °С.

Общую площадь зеркала воды пруда Flag , м2, с естественной аэрацией надлежит определять по формуле

СНиП 2.04.03-85 (72)

где Qw -расход сточных вод, м3 ×сут;

Ca -следует определять по формуле (63);

Cex -концентрация кислорода, которую необходимо поддерживать в воде, выходящей из пруда, мг/л;

ra -  величина атмосферной аэрации при дефиците кислорода, равном единице, принимаемая 3-4 г/(м2 ×сут);

Len ,, Lex , Klag -следует принимать по формуле (69).

Расчетную глубину пруда Hlag , м, с естественной аэрацией следует определять по формуле

СНиП 2.04.03-85  (73)

Рабочая глубина пруда не должна превышать, м: при Len свыше 100 мг/л-0,5, при Len до 100 мг/л-1; для прудов глубокой очистки с Len от 20 до 40 мг/л-2, с Len до 20 мг/л-3. При возможности замерзания пруда зимой Н должна быть увеличена на 0,5 м.

Время пребывания воды tlag , сут, глубокой очистки в пруде с искусственной аэрацией надлежит определять по формуле

СНиП 2.04.03-85(74)

где kd -динамическая константа скорости потребления кислорода, равная:

kd = b1 k , (75)

здесь b 1 -  коэффициент, зависящий от скорости vlag , м/с, движения воды в пруде, создаваемой аэрирующими устройствами или перемещением воды по коридорам лабиринтного типа; величина b 1 , определяется по формуле

СНиП 2.04.03-85 (76)

Если vlag > 0,05 м/с, то b 1 = 7.

Для повышения глубины очистки воды до БПКполн 3 мг/л и снижения содержания в ней биогенных элементов (азота и фосфора) рекомендуется применение в пруде высшей водной растительности-камыша, рогоза, тростника и др. Высшая водная растительность должна быть размешена в последней секции пруда.

Площадь, занимаемую высшей водной растительностью, допускается определять по нагрузке, составляющей 10 000 м3/сут на 1 га при плотности посадки 150-200 растений на 1 м2.

12. Очистка сточных вод в аэротенках

Биотенк (Б.)– аэротенк с насадкой, изготовляемой в виде кассет или блоков из жестких элементов или гибких рулонных материалов. Кассеты или блоки заполняют кольцами, кусками пеноматериалов (пемза, пеностекло, и т.п.), гофрированными листами или сетками из пластмассы или волокнистых материалов. Насадка позволяет увеличить концентрацию ила в Б. за счет закрепления микроорганизмов на ней. С увеличением концентрации ила возрастает пропускная способность Б., которая в обычных условиях лимитируется работой вторичных отстойников, не способных разделить иловые смеси при концентрации свыше 4—6 г/л. При использовании в качестве насадки насыпных и волокнистых материалов (например, в виде ершей) необходима их периодическая регенерация от чрезмерного накопления биомассы путем интенсивной аэрации.

Установки БТ (БТФ) предназначены для очистки бытовых и близких к ним по составу производственных сточных вод объемом 25-3000 м3/сутки от органических веществ, взвешенных веществ, азота, фосфора и ряда других примесей с УФ-обеззараживанием очищенных стоков.

Установки БТ работают по принципу биотенка-отстойника в режиме денитрификации и биологической детофосфотации с усреднением расхода стоков за счет специальной конструкции лотка осветленной воды. Предварительная механическая очистка сточных вод, уплотнение и стабилизация осадка совмещены в одной зоне из которой избыточный ил периодически откачивается эрлифтом.

Одним из наиболее распространенных биоокислителей для очистки производственных сточных вод является аэротенк. Небольшие предприятия пищевой промышленности часто используют в качестве биоокислителя очистную компактную биоустановку КУ-200 производительностью до 200 м3 в сутки с пневмоподачей сжатого воздуха. Установка состоит из трёх частей: аэротенка, где происходит деструкция органических загрязнений, отстойной части, где осветляется очищенный промсток и оседает активный ил, и стабилизатора избыточного активного ила.

Наличие биоконтактных элементов в биотенке позволяет снизить потребность в сжатом воздухе и, следовательно, электроэнергии втрое, а также значительно уменьшить период аэрации сточных вод в аэротенке.

Особенность биотенков нового типа позволяет рекомендовать их для очистки концентрированных по органическим загрязнениям промстоков различных пищевых производств и агропромышленных комплексов. Они могут быть использованы также для интенсификации работы существующих очистных сооружений.

В первой зоне происходит механическая очистка стоков от песка и грубодисперсных взвешенных веществ, анаэробная предотчистка от органических веществ, а также уплотнение и сбраживание осадка в анаэробно-аэробном режиме. Первая зона оборудована эрлифтом избыточного ила.

Во второй зоне, оборудованной системой мелкопузырчатой аэрации и блоками плоскостной загрузки, протекают процессы аэробно-аноксидного окисления органических веществ, нитрификации, денитрификации и биологической дефосфотации. Вторая зона имеет несколько последовательно соединенных отделений.

В третьей зоне происходит отстаивание активного ила, который перекачивается в первую зону установки. Третья зона оборудована блоком тонкослойного отстаивания, одним или двумя эрлифтами активного ила и лотками осветленной воды.

13. Биофильтры, виды, работа, основные параметры расчета.

Биофильтры

В этих сооружениях биоразлагаемые органические вещества жидких отходов сорбируются и окисляются в аэробных условиях популяций гетеротрофных факультативных бактерий, образующих биологическую пленку на поверхности насадки (загрузочного материала, субстрата). Для орошения насадки вода с загрязнениями периодически или непрерывно подается в верхнюю часть сооружения через неподвижные разбрызгиватели (спринклеры) или реактивные вращающиеся водораспределители. Активная часть биопленки распространяется на глубину 70…100 мкм. В слоях пленки, прилегающих к насадке, создаются анаэробные условия, образуются органические кислоты (и газы СН4 и H2S), величина рН снижается, происходит частичное отмирание клеток. Под воздействием гидравлической нагрузки такие части пленки отрываются от субстрата и выносятся с водой.

Пропускная способность биофильтра определяется площадью поверхности, занятой биопленкой, и возможностью свободного доступа кислорода воздуха к ней. Чем больше площадь поверхности биопленки (при одинаковой массе) и чем легче к ней доступ кислорода, тем выше пропускная способность биофильтра.

Важнейшая составная часть биофильтра — загрузочный материал. По типу загрузочного материала все биофильтры делят на две категории: с объемной и плоскостной загрузкой.

Биофильтры с объемной загрузкой подразделяются на капельные с малой пропускной способностью 0,9…9 м3/(м2.сут) (рис. 5.7), высоконагружаемые с большой пропускной способностью 9…40 м3/(м2.сут) (рис. 5.8) и башенные.

Рис. 5.7. Капельный биофильтр:

1 — дозирующие баки сточной воды; 2 — спринклеры: 3 — железобетонная стенка; 4— загрузка биофильтра; 5 — подача сточной воды; 6 — отводящий лоток.

Рис. 5.8. Высоконагружаемый биофильтр с реактивным оросителем.


Биофильтры с плоскостной загрузкой делятся на категории по типу загрузки: с жесткой засыпной, жесткой блочной и мягкой (рис. 5.9).

 

Рис. 5.9. Биофильтр с пластмассовой загрузкой производительностью 1400 м3/сут:

I — корпус из стеклопластика по металлическому каркасу; II — пластмассовая загрузка; III — решетка; IV — бетонные столбовые опоры; V — подводящий трубопровод; VI— реактивный ороситель; VII — отводящие лотки; а и б — раскладка блоков соответственно в четных и нечетных рядах.

 

Анаэробные биофильтры. Эта новая разновидность биофильтров представляет собой закрытые резервуары с загрузкой, сквозь которую вода профильтровывается восходящим потоком, без доступа в нее кислорода воздуха. Анаэробные биофильтры по принципу работы занимают промежуточное положение между обычными биофильтрами и метантенками. Биопленка в них закреплена на материале загрузки; процессы окисления сопровождаются метанообразованием. Анаэробные биофильтры можно применять для очистки высококонцентрированных сточных вод, не содержащих взвешенных веществ или содержащих их в незначительном количестве.

Расчет биофильтров. В основу расчета капельных и высоконагружаемых биофильтров положено представление о том, что снижение концентрации загрязнений, описываемых величиной БПК, может быть принято по типу уравнения реакции первого порядка:

 где Lτ и La — БПК соответственно очищенной и поступающей сточной воды; k' — константа скорости реакции; т — продолжительность процесса.

Если применить это уравнение для расчета снижения БПК в биофильтре, то, приняв во внимание соотношения: т = V/Q, V = F H; Q = qF; т = H/q (где V — объем биофильтра; F — его площадь; Q — расход воды; Н — глубина; q — гидравлическая нагрузка), несложно получить:

где k = 0,434. k'.

Выражение в правой части этого уравнения, названное критериальным комплексом Ф, получило вид:

где kT — константа окисления.

Биофильтры представляют собой системы для биологической обработки воды в условиях замедленного роста клеток или стационарного их состояния. Поэтому скорость биохимического окисления в биопленке невелика и обычно является лимитирующей стадией массопередачи загрязнений из фазы очищаемой воды в биопленку.

В биопленке должен соблюдаться баланс массы загрязнений, переданных в эту пленку в результате молекулярной диффузии и израсходованных в биохимической реакции

где DL — коэффициент диффузии в биопленке (< 10-5…10-6 см2/с); у — координата, нормальная к поверхности, через которую осуществляется транспорт массы; rL = dLб/dτ — скорость переработки загрязнений в результате биохимической реакции.

Для обеспечения надежности результатов проектирования требуются нормированные методы расчета объема загрузки насадки в фильтр. В таких методах обычно используются экспериментальные значения окислительной мощности ОМ. Объем загрузки Vф для очистки 1 м3 сточной воды определяется по выражению

При расчете биофильтров определяют Lн /Lτ = K; зная коэффициент K и заданную температуру сточной воды, по таблицам опытных данных выбирают основные параметры биофильтра: рабочую высоту загрузки H (в м) и удельную гидравлическую нагрузку на сооружение q [в м3/(м2сут)].

 


Информация о работе «Оборудование для биотехнологического производства»
Раздел: Промышленность, производство
Количество знаков с пробелами: 52685
Количество таблиц: 1
Количество изображений: 12

Похожие работы

Скачать
30691
0
1

... инновационных технологических решений, способный трансформировать их в конкурентный продукт для конечного использования. 3. Основные направления и перспективы развития технологических процессов прокатного и кузнечнопрессового производства Основные направления деятельности должны формироваться из круга проблем и вопросов, стоящих перед предприятиями и организациями. К ним нужно отнести ...

Скачать
63521
6
0

... сельского хозяйства и предпринимательства. Возрастут объемы инвестирования в интеллектуальный капитал как наиболее эффективный объект размещения ресурсов. Инвестиции в основной капитал в 2010 году по сравнению с 2005 годом увеличатся в 1,65 - 1,75 раза. 3. Наукоемкие отрасли и производства в развитых странах Какие конкретно отрасли промышленности можно отнести сегодня к наукоемким? Как ...

Скачать
41600
0
1

... куриных эмбрионов при культивировании, например, вируса гриппа, некоторые тканевые культуры млекопитающих и т.д., а также органические и неорганические вещества, используемые в биотехнологическом процессе, которые при попадании в окружающую среду могут послужить причиной экологической катастрофы. Поэтому на предприятии должны быть созданы условия для предотвращения хищений подлежащих уничтожению ...

Скачать
29527
0
0

... хозяйства, использования методов биотехнологии и биоинженерии. В этих целях нами совместно с учеными ведущих вузов, НИИ РАСХН и РАН разработан Инновационный проект по биотехнологии в агропромышленном производстве на 2004-2007гг. Этот проект предлагается как межведомственный, финансируемый Минпромнауки РФ и Минсельхозом РФ. Он отражает назревшие экономические и технологические проблемы сельского ...

0 комментариев


Наверх