4.5 Покрытия

Покрытия на основе гидроксиапатита весьма эффективны для обеспечения остеоинтеграции металлических имплантатов с костными тканями [318-320]. Титановые имплантаты с такими покрытиями используются в стоматологии и ортопедии. Покрытие должно обладать развитой системой отрытых, взаимосвязанных пор достаточного размера (предпочтительно более 150 мкм) для обеспечения биологических потоков, необходимых для процесса остеоинтеграции. Важной проблемой является долговременная устойчивость покрытия к резорбции, которая зависит не только от адгезионной прочности, но и от фазового состава и степени кристалличности структуры [321-323]. Резорбция может приводить к образованию дебриса, закупорке кровеносных капилляров и некрозам [109]. Повысить сопротивление биорезорбции позволяет введение фтора в состав ГА-покрытия, поскольку фторгидроксиапатит имеет существенно более низкое значение произведения растворимостей в водных солевых растворах, чем ГА [109].

В качестве материалов для стоматологических и ортопедических имплантатов используют нержавеющую сталь, сплавы на основе кобальта, титан и его сплавы [324-326]. Последние, возможно, наиболее перспективны, обладая такими качествами, как биосовместимость, коррозионная стойкость, относительно низкий модуль упругости и высокая усталостная прочность. К недостаткам титановых сплавов можно отнести относительно низкие износостойкость и сдвиговую прочность. Физико-химические аспекты взаимодействия титана и его сплавов со средой организма были подробно рассмотрены А.В.Карловым и В.П.Шаховым [11].

Существуют разнообразные методы нанесения ГА-покрытий на металлические, в том числе титановые имплантаты: магнетронное распыление, совместное электронно-лучевое испарение CaO и термическое испарение P2O5 [323], ионно-стимулированное осаждение [327,328], осаждение методом лазерной абляции [329], химическое осаждение из паровой фазы, электрофоретическое осаждение, золь-гель, биомиметические методы. Основным, нашедшим коммерческое применение методом формирования ГА-покрытий является плазменное напыление, несмотря на такие недостатки формируемого этим методом покрытия, как невысокая прочность адгезии к подложке, неоднородность морфологии, кристалличности и фазового состава.

Плазменное напыление

Степень сцепления плазменного покрытия с подложкой зависит от многих технологических параметров: шероховатость поверхности подложки, температура плазменной струи и подложки, дисперсность порошка и дистанция напыления. Как показано в работе [330], важнейшим фактором является дисперсность порошка, при этом максимальная прочность сцепления гидроксиапатитового покрытия достигается при размере частиц напыляемого порошка ГА 40-70 мкм. Степень развития удельной поверхности в плазменном покрытии может быть на порядок величины больше, чем у исходного порошка, при этом пористость покрытия может изменяться от 5-10 до 50-60%. В структуре покрытий обычно содержатся как макропоры размером до 350 мкм, так и микропоры диаметром меньше 3 мкм. Важно отметить, что пористая структура покрытия, формируемая методом плазменного напыления, способствует эффективному прорастанию костной ткани в поры имплантанта.

Однако известно, что покрытия биоактивных порошков, напыленные непосредственно на основу из титана, могут терять связь с основой, в то время как связь покрытия с костной тканью остается достаточно устойчивой [325]. Одним из способов надежного улучшения прочности адгезии покрытия к титановой основе является использование переходных слоев, обеспечивающих плавный переход свойств от материала покрытия к материалу подложки [325]. В работе [326] описан запатентованный способ получения надежного покрытия ГА, характеризующегося прочностью адгезии 18-20 МПа. Суть метода состоит в том, что авторы используют три промежуточных слоя: 1-й слой - пористый титан, дисперсность 3-10 мкм, 2-й слой - пористый титан, дисперсность 50-100 мкм, и 3-й слой - пористая композиция титановые частицы с ГА (60%Ti, 40%ГА). Создание дополнительной разветвленной поверхности приводит к наиболее прочному закреплению на ней частичек плазменно-напыленного ГА. Для повышения однородности и пористости покрытия предложена технология активации ультразвуковых вибраций подложки в процессе напыления [326].

При плазменном напылении исходного порошка ГА происходит изменение его фазового состава и кристалличности. Например, в работе [331] обнаружено образование вторичных фаз: ТКФ и других ортофосфатов, при напылении высокозакристаллизованного порошка ГА. Рефлексы дифрактограмм материала покрытия значительно уширены по сравнению с таковыми для исходного порошка, что указывает на аморфизацию материала покрытия в процессе его напыления. Сравнительные исследования кинетики растворения покрытия непосредственно после напыления и после дополнительной термической обработки продемонстрировали значительно более высокую скорость растворения исходного покрытия, что обусловлено большей растворимостью аморфизированной и вторичных ортофосфатных фаз. Аморфизация апатита в плазменно-напыленном покрытии была отмечена также и в работе [332]. Аморфизация происходит преимущественно в области интерфейса покрытия с подложкой, аморфная фаза расположена по границам кристаллических зерен. Аморфизацию считают основной причиной снижения адгезионной прочности покрытия с подложкой при физиологических условиях.

В работе [333] исследован процесс, основанный на получении градиентного покрытия ГА на титане в результате сочетания ионно-стимулированного осаждения и последующего плазменного напыления. На рис. 63 приведен эскиз экспериментального имплантата, изготовленного из титана. Предложена технология нанесения покрытий ГА, включающая две стадии:

1) формирование переходного слоя методом ионно-стимулированного роста в вакууме,

2) последующее наращивание слоя биокерамики методом плазменного напыления на воздухе.

На первой стадии вакуумным радиочастотным ионно-стимулированным распылением мишени на подложке формировался переходный слой ГА толщиной от 0,2 до 7 мкм с высокой адгезией (слой 2 на рис. 63). Это достигалось нанесением ГА в условиях меняющейся во времени интенсивности ионной бомбардировки. Ионная бомбардировка была реализована путем подачи на подложкодержатель ВЧ-мощности и постоянного отрицательного напряжения смещения (асимметричный емкостной разряд). Данная технология впервые была разработана и исследована для получения высоко текстурированных пленок диоксида циркония, стабилизированного иттрием, с высокой адгезией [334].

Нанесение переходного слоя ГА производилось с использованием мишени специальной конструкции. Керамические мишени большой площади, как правило, быстро разрушаются в процессе эксплуатации при нанесении пленок с большой скоростью. Это происходит вследствие градиента температуры по толщине мишени, так как мишень с одной стороны разогревается ионной бомбардировкой, а с другой охлаждается водой. Поэтому была использована мишень, собранная из таблеток спеченного при 12500 С ГА или керамики, полученной обжигом при той же температуре смеси ГА с 1 или 10 масс.% ФА. Таблетки имели диаметр 20 мм и толщину 6 мм. Их не приклеивали к мишенедержателю, как это обычно делается, а укладывали на металлическую фольгу, чтобы уменьшить тепловой контакт. Совокупность этих условий обеспечивала пониженный температурный градиент. Перед нанесением покрытия титановые подложки подвергались пероксидно-аммиачной отмывке. Распыление мишеней производилось в вакуумной камере при рабочем давлении 1 Па. Соотношение газов аргон/кислород было 10/1. Вначале осуществлялось предварительное распыление мишени “под заслонку”. Нанесение покрытия начиналось с ионного травления подложек подачей смещения -300 В. Затем открывалась заслонка и напряжение смещения на подложке плавно уменьшалось. На рис. 64 приведена диаграмма изменения ВЧ напряжения на подложке в процессе роста пленки. Процесс ионного травления подложки постепенно сменялся процессом роста пленки в условиях плавно уменьшающейся ионной бомбардировки. Таким образом, обеспечивали условия для взаимной диффузии материалов напыляемой пленки с подложкой с образованием переходного слоя, что и способствовало высокой адгезии формируемого покрытия. Кроме того, такая динамика смещения на подложке приводила к образованию аксиальной текстуры пленки с ориентацией (001). Конечное смещение на подложке показано на рис. 64 горизонтальной линией. Ранее было установлено, что оптимальным для получения плотных пленок является не нулевое значение конечного смещения. Для покрытий различного состава оно находится в пределах –40 ¸ –120 В [334, 335]; при этом покрытия имеют выраженную аксиальную текстуру и более высокую плотность, чем без ионной стимуляции. Поэтому на начальной стадии процесса покрытия получали в условиях ионной бомбардировки, следовательно, они были плотными. Постепенно ионная бомбардировка уменьшалась до нуля, при этом плотность уменьшалась. При отжиге, из-за малой плотности, с поверхности покрытия образуются поры, но не на всю глубину. Отжиг проводили на воздухе при 800OC в течении 5 минут при проведении второго цикла - плазменного напыления. После отжига переходный слой от подложки к пленке не растрескивался. На второй стадии процесса на полученный подслой газовым плазмотроном наносилось покрытие требуемой толщины и химического состава.

На рис. 65 приведены дифрактограммы, снятые с титановой подложки (1), покрытия толщиной 5 мкм, полученного ионно-стимулированным распылением непосредственно после нанесения (2) и того же покрытия после термообработки при 8000С в течение 15 минут на воздухе (3). На дифрактограмме покрытия непосредственно после его нанесения имеется рефлекс, соответствующий плоскостям (002) ГА, причем он существенно размыт, что свидетельствует о высокодисперсном состоянии структуры материала покрытия и(или) малой степени упорядочения (кристалличности) его структуры. В результата отжига интенсивность этого рефлекса существенно возрастает, появляется рефлекс (004), что указывает на упорядочение, рост зерна и возможное снятие остаточных напряжений кристаллической решетки ГА. Электронная микрофотография поверхности этого покрытия показана на рис. 66. Как видно, покрытие практически не содержит пор, средний размер кристаллитов составляет примерно 20 мкм.

На рис. 67 приведена структура покрытия ГА толщиной около 100 мкм после плазменного напыления на воздухе на подслой толщиной 5 мкм, полученный ионно-стимулированным осаждением в вакууме. Как видно, плазменное покрытие содержит крупные поры размером до 100-150 мкм. Геометрическая форма большинства частиц, образующих покрытие, сферическая и их размер 25 мкм и выше. Частицы прозрачные. По-видимому, частицы порошка ГА в процессе напыления расплавляются и попадают на поверхность подложки в жидкой фазе. Для анализа интерфейсного слоя пленка-подложка использовался метод оптической микроскопии. Исследовали поперечный разрез титановой подложки с ГА-покрытием. Пропитка сколотого слоя красящей жидкостью со стороны подложки подтвердила наличие сквозных поперечных пор даже при толщине слоя 350 мкм. Распределение усредненного размера пор по глубине слоя имеет экспоненциальный характер - крупные поры преобладают на поверхности, а мелкие в глубине слоя. Размер мелких пор определяется преобладающим размером гранул исходного порошка ГА, используемого для напыления.

Рентгенограммы, снятые от исходного ГА и плазменного ГА-покрытия, идентичны, за исключением некоторого отличия в интенсивностях отдельных рефлексов. На рис. 68 показаны, в качестве примера, дифрактограммы, снятые с поверхности плазменного покрытия ГА (рис. 68а) и ГА (90%)-ФА(10%) (рис. 68б). Дифрактограммы практически идентичны, за исключением соотношения интенсивностей некоторых рефлексов, и соответствуют дифрактограммам исходных порошков, использованных для плазменного напыления.

Химический состав получаемых покрытий определяли методом рентгеновской флуоресцентной спектроскопии. Линии Ca K, Ca K, P K спектров флуоресценции имеют примерно одинаковую интенсивность для порошка и плазменного покрытия, что указывает на идентичность их составов.

Проведенные исследования показали устойчивость двухслойных ГА и ФА-содержащих ГА покрытий к растворам щелочей: KOH, NaOH, NH4OH, и кислот: CH3COOH, H3PO4 (от 10 до 80%-ной), при температурах от 10 до 600 С. В растворах HCl и HNO3 при этих температурах после 72 часов выдержки начинается растворение верхнего слоя ГА. Выдерживанием образцов в данных условиях в течение 1440 часов полностью удалить покрытия ГА не удалось.

Проведены исследования in vivo остеоинтеграции прототипов титановых имплантатов с двухслойными покрытиями ГА, содержащими 0, 1, 2 и 10 масс.% фторапатита, нанесенными по описанной технологии. Имплантаты вживляли в берцовую кость взрослых белых кроликов линии New Zeeland и исследовали образование связи имплантата с костной тканью через 6 недель. Установлена остеинтеграция имплантата посредством прорастания костной ткани в поровое пространство, причем степень остеоинтеграции не зависит (статистические данные) от содержания фторапатита в покрытии.

Лазерное осаждение

Принципиально иной подход к формированию биосовместимого покрытия - нанесение его методом импульсной лазерной абляции (ПЛАД), позволяющим получать гомогенные по составу и структуре пленки с высокой прочностью адгезии к подложке [336-339]. В зависимости от параметров проведения процесса, можно варьировать шероховатость поверхности покрытия. Лазерные покрытия могут быть использованы в качестве промежуточных между подложкой и плазменно-напыленным слоем. Метод успешно был использован для получения пленок биоактивных стекол на титановых подложках [340]. Однако очень мало известно о формировании фазового состава, структуры и свойств фосфатно-кальциевых покрытий, наносимых методом лазерной абляции.

В работе [337] изучали покрытия ГА и ГА-10%ФА, наносимые на подложки из чистого титана. Нанесение проводили с использованием Nd:YAG-лазера (длина волны излучения 532 нм, длительность импульса 10 нс, частота 10 Гц, флюэнс 12,3 Дж/см2, расстояние между подложкой и мишенью 10 мм, длительность нанесения 1 ч). Мишени в форме таблеток диаметром 14 мм изготавливали прессованием и спеканием порошков ГА и ГА-10%ФА до остаточной пористости 0,4-1,4%. Изучали микроструктуру покрытия методом сканирующей электронной микроскопии, его фазовый состав и твердость. Методика измерения истинной твердости материала покрытия требует специального рассмотрения ввиду необычности полученных результатов.

Твердость измеряли вдавливанием пирамиды Виккерса при нагрузках от 0,1 до 5,0 Н. Данная область нагрузок перекрывает весь диапазон откликов композиционной системы покрытие-подложка от локализованной упруго-пластической деформации покрытия до деформации, при которой вклад от покрытия существенно мал по сравнению с вкладом от деформации подложки [341]. Для разделения измеряемой твердости Hc на ее компоненты (твердость подложки и твердость покрытия) использовали модель правила смесей по поверхности [342]:

Hc = (Af/A)Hf + (As/A)Hs (77)

где A - контактная площадь, символы f и s относятся к покрытию и подложке, соответственно, H - твердость. Из геометрических соображений выражение (77) может быть записано в виде:

Hf = Hs + (Hc – Hs)/[2c(t/d) – c2(t/d)2] (78)

где t - толщина покрытия, с = 2 sin2 110 » 0,07 для твердой хрупкой пленки на более мягкой подложке, d = 1/7D - глубина проникновения индентера, D - диагональ отпечатка. Данная модель применима при значительных глубинах вдавливания индентера, при которых поверхностные перемещения покрытия превышают его толщину. Это соответствует значениям d/t более 1 [343]. Как следствие, выбор адекватного интервала нагрузок на индентер имеет большое значение для точности расчета истинной твердости покрытия. Далее, необходимо учитывать размерный эффект индентирования, заключающийся в том, что измеряемая твердость снижается с возрастанием глубины вдавливания индентера [344,345]. С учетом этого эффекта, уравнение (78) может быть модифицировано следующим образом:

Hc = Hs0 + [Bs + 2c1t(Hf0 – Hs0)]/D (79)

где c1 = c(D/d)» 0,5, Hf0 и Hs0 - истинная твердость покрытия и подложки, соответственно; Bs - коэффициент, значение которого может быть найдено из данных по твердости подложки без покрытия. Из экспериментов с титановой подложкой найдены следующие значения: Hs0 = 1,84±0,06 ГПа, Bs = 5,38×10-6 ГПа×м.

Были получены плотные пленки фосфата кальция толщиной 2,7-2,9 мкм. Микроструктура покрытий показана на рис. 69. На поверхности покрытий присутствуют капли размером до 10 мкм, возникающие в результате плавления и экспульсии материала мишени. Согласно данным энерго-дисперсионного рентгеновского анализа, соотношение Са/Р в покрытиях сохраняется примерно тем же, что и в исходной керамике (расчетное масс. соотношение 2,15). Усредненное по 20 точкам измерений содержание фтора в покрытии, полученном с использованием керамики ГА-10%ФА, составляет 0,54 масс.%, что близко к расчетному.

На рис. 70 приведены дифрактограммы исходной ГА и ГА-10%ФА керамики, а на рис. 71 - дифрактограммы, снятые с покрытий. Из сравнения следует, что рефлексы, соответствующие структуре апатита, полностью отсутствуют на дифрактограммах покрытий. На рис. 72 показана зависимость измеряемой твердости композиционной системы покрытие - подложка от величины, обратной размеру диагонали отпечатка, для образца ГА-10%ФА. Обработка методом наименьших квадратов дала значение Bc = [Bs + 2ct(Hf0 – Hs0)], равное 49,8 ×10-6 ГПа.м. Рассчитанные значения истинной твердости исходной керамики и покрытий представлены в таблице 16. Из приведенных в таблице данных следует, что твердость покрытия существенно, в 3-4 раза, превышает твердость исходной керамики. Этот неожиданный результат не является артефактом, поскольку методика была успешно применена ранее для измерения твердости пленок различной природы и толщины [346,347]. Объяснение следует искать в особенностях структуры фосфатно-кальциевых покрытий, формируемых методом ПЛАД. Рассматривают следующие возможные причины повышенной твердости тонких пленок [348]. Объем деформируемого материала мал и содержит пониженное количество дислокаций, в результате чего прочность (предел текучести) приближается к теоретическому пределу для совершенного кристалла. В процессе индентирования может происходить интенсивное деформационное упрочнение в результате торможения перемещения дислокаций границей раздела пленка/подложка, что приводит к возникновению полей внутренних напряжений, препятствующих дальнейшему перемещению дислокаций и к возможному торможению распространения трещин. Разветвленная сеть границ между нанозернами в структуре покрытия также затрудняет перемещение дислокаций. Однако трудно предположить существенное по величине деформационное упрочнение в хрупких материалах со структурой апатита, поскольку известно, что плотность дислокаций в кристаллах такого типа должны быть низкой.

Установлено, что даже использование эксимерного KrF лазера (длина волны излучения 248 нм) в сочетании с УФ-облучением (184,9 нм) при малых флюэнсах, 1-2 Дж/см2, позволяет получать методом ПЛАД фосфатно-кальциевые покрытия (в качестве мишени использовали таблетки из ГА) с необычно высокими показателями механических свойств: модуля Юнга (до 180 ГПа) и твердости (до 7,5 ГПа, измерено методом наноиндентирования) [349]. Эффект объясняют химическими превращениями молекулы ГА под воздействием лазерного и УФ-облучения, в частности протеканием реакции фотодиссоциации ГА с образованием безводного фосфата кальция и улетучиванием пятиокиси фосфора из продуктов реакции:

Са10(РО4)6(ОН)2 - Н2О → Са4О(РО4)2 + Са2Р2О7 + 4СаО + Р2О5­ (80)

Продукты реакции обладают повышенной реакционной способностью по отношению к подложке, изготовленной из титанового сплава, обеспечивая получение плотного тонкокристаллического покрытия, содержащего помимо ГА и другие кальций-фосфатные фазы.

Покрытия, получаемые с использованием Nd:YAG лазера при высоких флэнсах, по-видимому, имеют существенно разупорядоченную, аморфизованную структуру, образующуюся в результате плавления и частичного химического разложения материала мишени в лазерной плазме. Материалы с такой структурой обладают низкой способностью к релаксации механических напряжений посредством пластической деформации и, следовательно, высокой твердостью. Известно, что пленки, осажденные с использованием Nd:YAG лазера содержат больше стеклообразной фазы по сравнению с пленками, осажденными эксимерным лазером, вследствие пониженного коэффициента поглощения излучения материалом ГА-мишени [350]. Важное значение для формирования структуры покрытия имеет температура подложки. Осаждение на подложку при комнатной температуре приводит к большей аморфизации покрытия по сравнению с нанесением на подогретую подложку. С повышением флюэнса усиливается испарение материала мишени и его термическое разложение [339]. Эти процессы увеличивают разупорядоченность структуры. Фосфатно-кальциевые покрытия, нанесенные методом ПЛАД при высоких флюэнсах, как было показано, обладают хорошей биосовместимостью с остеобластами, способствуя их пролиферации [339]. Таким образом, метод ПЛАД позволяет гибко варьировать параметры структуры и показатели свойств кальций-фосфатных покрытий в широких пределах.

Электронно-лучевое осаждение

Другим перспективным физическим методом получения биосовместимых покрытий является электронно-лучевое осаждение. Данный способ успешно использован для нанесения покрытий карбида титана на титановые имплантаты с целью защиты последнего от коррозии жидкостями организма и придания шероховатости поверхности. Однако известно относительно мало исследований, направленных на нанесение кальций-фосфатных покрытий. В работе [351] изучали осаждение ГА на кремниевые подложки (модельный материал) с использованием спеченного ГА в качестве мишеней. Осаждение проводили в вакууме 5·10-4 Па при ускоряющем напряжении 6 кВ и токе пучка 110 мА, температуре подогрева подложки 1600С. Толщина пленок составила примерно 500 нм. Осажденные пленки были аморфными, аморфизация сохранялась после отжига при 7000С. Полная кристаллизация покрытия была достигнута только отжигом при 12000С в течение 3 ч, причем на дифрактограммах присутствуют основные пики ГА. Однако соотношение Са/Р в материале покрытия изменялось в зависимости от температуры термической обработки (рис. 73), что является результатом изменения последовательности испарения фосфора и кальция и должно оказывать существенное влияние на биологическое поведение покрытия. Прочность адгезии покрытия к подложке (скратч-тест) снижалась с повышением температуры отжига. Многие вопросы, связанные с электронно-лучевым осаждением фосфатно-кальциевых покрытий, такие как влияние температуры подогрева подложки, величины смещения ускоряющего напряжения и др., являются предметом дальнейших исследований, но метод электронно-лучевого осаждения может рассматриваться как весьма перспективный для получения тонких пленок фосфатов кальция, даже в производственных масштабах.

Биомиметическое формирование покрытий

Связь имплантируемого материала с костной тканью развивается через стадию биомиметического формирования биологически активного слоя карбонат-содержащего апатита на поверхности материала. Образование такого слоя инициируется переходом ионов кальция из имплантируемого материала в жидкость (СБФ), моделирующую по своему составу внеклеточную жидкость организма. Такая жидкость обычно близка про составу к плазме крови и содержит фосфат- и карбонат-ионы. В результате изменения произведения ионных активностей апатита в жидкости и при наличии соответствующих центров, происходит биомиметическая кристаллизация апатита на поверхности материала. Биомиметические апатитовые покрытия могут быть сформированы и на инертном, устойчивом к растворению материале, например полимерном. В этом случае материал последовательно погружают в СБФ для создания центров кристаллизации (обычно, СБФ с размещенными в нем гранулами биостекла, содержащего Са и кремнезем) и затем в раствор, пересыщенный по отношению к апатиту для кристаллизации последнего на созданных центрах. Толщина биомиметического слоя возрастает во времени, скорость его формирования увеличивается со степенью пересыщения СБФ. Метод успешно был использован для нанесения покрытий на различные полимерные материалы, в том числе в виде волокон или тканей, из которых могут быть созданы имплантируемые конструкции, например матриксы для клеточных технологий регенерации костных тканей. Конструкции могут быть приданы свойства, близкие к таковым у естественной ткани, в том числе высокое сопротивление разрушению и низкий модуль упругости.

Первоначально, биомиметический метод был применен для формирования апатитовых слоев на биостеклах и биоситаллах, которые сами являются источниками ионов кальция, переходящих в СБФ. Затем метод был распространен на полимерные и металлические материалы. Для последних существует своя специфика формирования покрытия. В работе [352] изучали нанесение покрытия на тантал, который не обладает биоактивностью по отношению к образованию связи с костной тканью. Выдержка Та в СБФ приводит к образованию связей Та-ОН на его поверхности, эффективных для последующего инициирования осаждения апатита, что, однако, требует длительного периода времени (28 суток в описанном эксперименте). Обработка тантала 0,5М раствором NaOH при 600С перед погружением его в СБФ приводила к существенному ускорению процесса, что обусловлено образованием поверхностного слоя гидрогеля танталата натрия. Полагают, что ионы натрия легко переходят из гидрогеля в раствор в результате ионного обмена с Н3О+ в СБФ, процесс сопровождается образованием Та-ОН связей на поверхности и повышением концентрации групп ОН- в растворе. Связи Та-ОН индуцируют нуклеацию апатита, причем процесс ускоряется за счет увеличения произведения ионных активностей. Для повышения механической стабильности, гидрогель может быть подвергнут термической обработке при 3000С на воздухе для перевода его в аморфный танталат натрия и, далее, при 5000С - для его кристаллизации. Однако апатитообразующая способность слоя снижалась с повышением температуры обработки выше 3000С. Предлагается использовать данный процесс для обработки стоматологических и ортопедических материалов и устройств перед их имплантированием.

Метод может быть использован и для обработки других металлов, образующих соли натрия при их обработке щелочью. Проведены эксперименты по биомиметическому формированию ГА-покрытий на чистом титане [353]. Обработку титана в 1, 5 и 10М растворе NaOH проводили в автоклаве при 1300С в течение от 1 до 6 ч, с последующей термообработкой при 6000С на воздухе. Затем образцы обрабатывали в СБФ при физиологической температуре в течение 4 недель. Установлено, что слой диоксида титана, присутствующий изначально на поверхности титана, трансформируется в титанат натрия при гидротермальной обработке. Из СБФ происходит гетерогенное осаждение карбонат-содержащего ГА на отрицательно заряженную поверхность гидротермально-обработанного титана. Растрескивание покрытий снижалось с уменьшением их толщины. Покрытие представляло собой смесь кристаллов ГА и диоксида титана.

Существуют и другие методы нанесения фосфатно-кальциевых покрытий на биологически инертные материалы, которым присущи те или иные недостатки и достоинства. Например, гибким и экономичным является процесс электрофоретического осаждения покрытий. Он может быть реализован для изделий сложной формы, позволяет получать покрытия толщиной от менее 1 мкм до более 100 мкм. Метод может быть реализован следующим образом [354]. Готовят суспензию порошка ГА (0,5 г) в этаноле (100 мл), которую обрабатывают ультразвуком. В ванне с суспензией между металлической подложкой (катодом) и медным анодом создают разность потенциалов 50 В. Процесс продолжается от 2 до 5 мин. Осажденное покрытие необходимо подвергать термической обработке для уплотнения и спекания. При этом возникают проблемы отслаивания покрытия из-за разности температурных коэффициентов расширения с материалом подложки. При обжиге покрытия для спекания может происходить его растрескивание, особенно при осаждении тонкодисперсных порошков ГА.

Покрытия ГА на титановом сплаве с 6%Al с 4%V (катод) получали электролизом в ванне состава 0,168М Са(NO3)2·4H2O и 0,1M NH4H2PO4 при разности потенциалов от 1 до 10 В и температуре от 25 до 650С [355]. Полученные покрытия состава СаНРО4·2Н2О затем обрабатывали в автоклаве при температурах от 110 до 1500С и рН 10-11 для конверсии их в ГА. Кинетика формирования ГА при гидротермальной обработке описана законом Аррениуса с кажущейся энергией активации процесса 94,4 кДж/моль. Получены качественные покрытия со структурой нитевидных кристаллов.

Приведенные примеры иллюстрируют лишь некоторые аспекты многообразия возможных способов получения биосовместимых фосфатно-кальциевых покрытий на биологически инертных материалах для придания им биоактивности. Существует возможность варьирования структуры, морфологии и показателей свойств покрытий в широких пределах в зависимости от конкретных предъявляемых требований к имплантируемому устройству. Следует отметить относительно малое количество известных исследований in vitro и in vivo, результаты которых могли бы в значительной степени определить рациональный выбор технологии.



Информация о работе «Биокерамика на основе фосфатов кальция»
Раздел: Химия
Количество знаков с пробелами: 333238
Количество таблиц: 0
Количество изображений: 0

0 комментариев


Наверх