3.6.3 Дія іонізуючого випромінювання на організм людини

У результаті впливу іонізуючого випромінювання на організм людини в тканинах можуть відбуватися складні фізичні, хімічні й біологічні процеси.

Первинним фізичним актом взаємодії іонізуючого випромінювання з біологічним об'єктом є іонізація. Саме через іонізацію відбувається передача енергії об'єкта. Відомо, що в біологічній тканині 60-70 % по масі є вода. У результаті іонізації молекули води утворюють вільні радикали Н+ і ОН- за такою схемою:

 

H2O →H+ + OH- .

У присутності кисню утвориться також вільний радикал гідроперекису (H2O-) і перекис водню (H2 O2), що є сильними окислювачами.

Вільні радикали й окислювачі, які є продуктами радіолізу води, мають високу хімічну активність, а тому вступають у хімічні реакції з молекулами білків, ферментів й інших структурних елементів біологічної тканини, що призводить до зміни біологічних процесів в організмі. У результаті порушуються обмінні процеси, придушується активність ферментних систем, сповільнюється і припиняється ріст тканин, виникають нові хімічні сполуки, не властиві організму - токсини. Це приводить до порушень життєдіяльності окремих функцій або систем організму в цілому. У залежності від величини поглиненої дози й індивідуальних особливостей організму, викликані зміни можуть бути зворотними або незворотними.

Деякі радіоактивні речовини накопичуються в окремих внутрішніх органах. Наприклад, джерела альфа - випромінювання (радій, уран, плутоній), бета - випромінювання (стронцій і ітрій) і гамма-випромінювання (цирконій), відкладаються в кісткових тканинах. Усі ці речовини важко виводяться з організму.

Місця накопичування радіонуклідів в організмі людини в таблиці 4.


Таблиця 4

Щитовидна залоза

129I, 131I, 99Tc.

Легені

85Kr, 238Pt, 239Pt, 222Rd, 233U, 133Xe, 135Xe.

Печінка

137Cs, 58Co, 60Co, 239Ne, 238Pt, 239Pt, 241Pt.

Кістки

140Ba, 14C, 154Er, 155Er, 32P, 238Pt, 239Pt, 241Pt, 147Pr, 226Ra, 89Sr, 90Sr, 234Th, 233U, 90Y, 65Zn.

Підшлункова залоза

210Po.

Нирки

134Cs, 137Cs, 106Rt.

Яєчники

140Ba, 134Cs, 137Cs, 58Ko, 60Ko, 131I, 85Kr, 239Pt, 40K, 42K, 106Rt, 90Y, 65Zn.

М’язи

134Cs, 137Cs, 154Er, 155Er, 40K, 42K.

Шкіра

35S

При вивченні дії випромінювання на організм були встановлені такі особливості:

·  Висока ефективність поглиненої енергії. Малі кількості поглиненої енергії випромінювання можуть викликати глибокі біологічні зміни в організмі;

·  Наявність прихованого, або інкубаційного, прояву дії іонізуючого випромінювання. Цей період часто називають періодом уявного благополуччя. Тривалість його скорочується при опроміненні великими дозами;

·  дія від малих доз може додаватися або накопичуватися. Цей ефект називається кумуляцією;

·  випромінювання впливає не тільки на даний живий організм, але і на його потомство. Це так називаний генетичний ефект;

·  різні органи живого організму мають свою чутливість до опромінення. При щоденному впливі дози 0.02-0.05 Р уже настають зміни в крові;

·  не кожен організм у цілому однаково реагує на опромінення;

·  опромінення залежить від частоти. Одноразове опромінення у великій дозі викликає більш глибокі наслідки ніж її частини.

У результаті впливу іонізуючого випромінювання на організм людини в тканинах можуть відбуватися складні фізичні, хімічні й біологічні процеси, які в кінцевому результаті зводяться до порушення нормального проходження біохімічних процесів і обміну речовин. Поглинена доза випромінювання, що викликає руйнування окремих частин тіла, а потім смерть, перевищує смертельну поглинену дозу опромінення всього тіла.

 Смертельні поглинені дози для окремих частин тіла такі: голова – 20 Гр, нижня частина живота - 5 0 Гр, грудна клітка – 100 Гр, кінцівки – 200 Гр.

Ступінь чутливості різних тканин до опромінення неоднакова. Якщо розглядати тканини органів у порядку зменшення їхньої чутливості до дії випромінювання, то одержимо таку послідовність:

·  лімфоїдна тканина;

·  лімфатичні вузли;

·  підшлункова залоза;

·  зобна залоза;

·  кістковий мозок;

·  зародкові клітини.

Велика чутливість кровотворних органів до радіації лежить в основі визначення характеру променевої хвороби. При однократному опроміненні всього тіла людини поглиненою дозою 0,5 Гр через день після опромінення може різко скоротитися число лімфоцитів, зменшиться також і кількість еритроцитів (червоних кров'яних тілець).

У здорової людини нараховується близько 1014 червоних кров'яних тілець при щоденному відтворенні 1012, а в хворого таке співвідношення порушується.

Важливим фактором дії іонізуючого випромінювання на організм є час опромінення. Із збільшенням потужності дози руйнівна дія випромінювання зростає. Чим більший проміжок часу випромінювання певної дози буде діяти на організм, тим менша руйнівна дія буде в нього .

Біологічна ефективність кожного виду іонізуючого випромінювання знаходиться в залежності від питомої іонізації. Так, наприклад, a- частинки з енергією 3 МеВ утворять 40 000 пар іонів на одному міліметрі шляху, β- частинки з такою же енергією - до чотирьох пар іонів. Альфа - частинки проникають через поверхню шкіри до глибини 40 μм, бета – частинки - до 0.13 см.

Зовнішнє опромінення a- і β - випромінюваннями менш небезпечне, тому що a- і β- частинки мають невелику довжину пробігу в тканині і не досягають кровотворних і інших органів.

Ступінь враження організму залежить від розміру поверхні, яка опромінюється. Зі зменшенням поверхні, що опромінюється, зменшується і біологічний ефект. Так, при опроміненні фотонами поглинутою дозою 4,50 Гр ділянки тіла площею 6 см2 помітного руйнування організму не спостерігалося, а при опроміненні такою ж дозою всього організму спостерігається близько 50% летальних випадків.

Індивідуальні особливості організму людини проявляються лише при невеликих поглинутих дозах. Чим молодша людина, тим вища її чутливість до опромінення, особливо висока вона у дітей. Доросла людина у віці 25 років і більше найбільш стійка до опромінення.

Є ряд професій, де існує велика імовірність опромінення. При деяких надзвичайних обставинах (наприклад, вибух на АЕС) опроміненню може піддатися населення, яке проживає на величезних територіях. Не існує речовин, здатних цілком захистити персонал у таких випадках, але є речовини, які частково захищають організм людини від випромінювання. Вони називаються радіопротекторами. Історично відмічено, що на час вибухів атомних бомб у Японії, практично не постраждали від опромінення люди, які на момент вибуху перебували в безпечній зоні і були дуже п’яні. Тут етиловий спирт в значних дозах відіграв роль радіопротектора.

Радіопротектори частково запобігають виникнення хімічно активних радикалів, що утворюються під впливом випромінювання. Механізми дії радіопротекторів різні. Одні з них вступають у хімічну реакцію з радіоактивними ізотопами, що попадають в організм, і нейтралізують їх, утворюючи нейтральні речовини, які легко виводяться з організму. Інші мають відмінний механізм. Одні радіопротектори діють протягом короткого проміжку часу, час дії інших більш тривалий. Існує кілька різновидностей радіопротекторів: таблетки, порошки й розчини.

При попаданні радіоактивних речовин усередину організму руйнівну дію здійснюють в основному a- джерела, а потім β- й γ - джерела, тобто в зворотній послідовності до зовнішнього опромінення. Альфа - частинки, що мають велику щільність іонізації, руйнують слизисту оболонку шлунку, що є слабшим захистом внутрішніх органів у порівнянні з шкірою.

Негативні наслідки при попаданні твердих частинок у дихальні органи залежать від ступеня дискретності частинок. Так, частинки з розмірами меншими 0.1 мкм при вдиханні разом з повітрям попадають у легені, а при видиханні виводяться. У легенях залишається тільки невелика їх частина. Великі частинки з розмірами більшими понад 5 мкм, майже усі затримуються носовою порожниною.

Ступінь небезпеки залежить також від швидкості виведення речовини з організму. Якщо радіонукліди, що потрапили усередину організму однотипні з елементами, що споживаються людиною разом з їжею, то вони не затримуються на тривалий час в організмі, а виділяються разом з ними (натрій, хлор, калій і інші).

Інертні радіоактивні гази (аргон, ксенон, криптон і інші) не входять до складу біологічної тканини. Тому вони згодом повністю виводяться з організму.

Деякі радіоактивні речовини, потрапляючи в організм, розподіляються в ньому більш або менш рівномірно, інші концентруються в окремих внутрішніх органах (табл. 4). Так у кісткових тканинах відкладаються такі джерела a- випромінювань, як радій, уран і плутоній. Стронцій і ітрій, що є джерелами β- випромінювання, і цирконій - джерело γ- випромінювання теж відкладаються в кісткових тканинах. Ці елементи, хімічно зв'язуються з кістковою тканиною, а тому дуже важко виводяться з організму.

Тривалий час утримуються в організмі також елементи з великим атомним номером (полоній, уран і ін.). Елементи, що утворюють в організмі легкорозчинні солі і накопичуються в м'яких тканинах, легко виводяться з організму.

На швидкість виведення радіоактивної речовини великий вплив має період піврозпаду даної радіоактивної речовини Т. Якщо позначити Тб період біологічного піввиведення радіоактивного ізотопу з організму, то ефективний період піврозпаду Теф, що враховує радіоактивний розпад і біологічне виведення, виразиться формулою:

 

Теф = Т ּТб / (Т + Тб) .

Основні особливості біологічної дії іонізуючого випромінювання такі:

·  Дія іонізуючого випромінювання на організм не відчутна людиною. Тому це небезпечно. Дозиметричні прилади є як би додатковим органом чуття, призначеним для сприйняття іонізуючого випромінювання;

·  Видимі враження шкірного покриву, нездужання, характерні для променевого захворювання, з'являються не відразу, а через деякий час;

·  Підсумовування доз відбувається приховано. Якщо в організм людини систематично будуть попадати радіоактивні речовини, то згодом дози додаються, що неминуче приводить до променевих хвороб.

3.6.4 Вплив іонізуючого випромінювання на біологічні об'єкти при загальному опроміненні

Небажані радіаційні ефекти, від яких необхідний захист, поділяються на соматичні й спадкоємні (генетичні).

Соматичні ефекти виявляються безпосередньо в опроміненої людини, а генетичні - у його потомстві. Слід пам'ятати, що такий розподіл у значній мірі є умовним, тому що результати опромінення залежать від того, у яких клітинах відбулися порушення - у соматичних чи у зародкових. Генетичний апарат ушкоджується в обох випадках, а отже, і ушкодження завжди можуть успадковуватися.

Різноманітні ушкодження генів , різні види аберацій хромосом і соматичних клітин об'єднані в поняття соматичного мутагенезу.

Аберації хромосом, які виникають у клітинах критичних органів (кістковому мозку і шлунку), - одна з основних причин гострого променевого синдрому внаслідок масового відмирання таких клітин.

Таким чином, велике значення для конкретної (опроміненої) особи і її нащадків має не характер ефекту, а вид мутацій і те, у яких клітинках (зародкових чи соматичних) вони виникають. Якщо домінантні мутації (до числа яких відносяться і багато аберацій хромосом) виникають у зародкових клітинках, то вони або приводять до зменшення запліднення й народжуваності, або проявляються як правило, у першому поколінні, не переходячи в наступні.

Пошкодження , які виникають у соматичних клітинках найчастіше приводять до смерті самих клітин або їх потомства і можуть бути причиною втрати генетичного контролю за рядом важливих функцій організму.

Рецесивні мутації викликаються ушкодженнями окремих генів у більшості випадків у вигляді точкових мутацій. Якщо такі мутації виникають у зародкових клітинках, то ефект опромінення може проявлятися тривалий час в безмежному ряді поколінь, підкоряючись загальним законам розщеплення ознак, імовірність прояву яких зростає з числом опромінених осіб у популяції.

Незважаючи на очевидну необхідність ретельного розмежування понять, до соматичних умовно відносять безпосередні ефекти опромінення (гостру або хронічну променеву хворобу і локальні променеві ушкодження) і його віддалені наслідки (скорочення тривалості життя, виникнення пухлин, лейкозів і ін.), а до генетичних - спадкоємні ушкодження генів зародкових клітин, які проявляються в потомстві опромінених .

Віддалені наслідки опромінення іноді називають стохастичними (підкреслюючи їх імовірнісний характер) на відміну від не стохастичних, що проявляються тільки після накопичування дози більшої за граничну (імовірність появи і вага яких швидко зростає із зростанням дози).

До нестохастичних ефектів відносять променеву катаракту, порушення репродуктивної функції, променеві ушкодження зародка і плоду, косметичні дефекти шкіри, склеротичні і дистрофічні ушкодження різних тканин і інші.

Під стохастичними розуміють такі наслідки опромінення, імовірність появи яких існує при як завгодно малих дозах іонізуючого випромінювання і зростає з дозою, тоді як вага прояву від дози не залежить. До стохастичних відносять пухлини і передані потомству спадкоємні зміни; вони виявляються лише при тривалому спостереженні за великими групами населення, що нараховують десятки або сотні тисяч людей. Для одержання надійних кількісних даних про вплив на спадковість опромінення в малих дозах необхідні спостереження й аналіз ще більш численних популяцій, які включають не одне покоління нащадків.

 Зрозуміло, що такі дослідження вимагають тривалого часу спостережень, великих затрат праці й коштів, навіть якщо вони проводяться на тваринах, які швидко розмножуються і є генетично добре вивченими об'єктами, наприклад мишами.


Информация о работе «Елементи дозиметрії»
Раздел: Физика
Количество знаков с пробелами: 23738
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
52023
4
7

... випромінювання. Також при розгляді даного питання потрібно зробити наголос на практичній цінності цього питання та на формування вмінь та навичок безпечного поводження із радіоактивними речовинами. 3.3. Методика вивчення методів практичного виявлення та вимірювання радіоактивного випромінювання Вивчення методів практичного виявлення та вимірювання радіоактивного випромінювання передбачає ...

Скачать
91724
2
3

... на тривалість життя людини хронічне опромінювання, наприклад за потужності поглиненої дози 0,001 — 0,01 Гр/добу (0,1 — 1 рад/добу).   РОЗДІЛ 3. ДОЗИМЕТРИЧНИЙ КОНТРОЛЬ ТА ЗАХИСТ ДОВКІЛЛЯ ВІД ІОНІЗУЮЧИХ ВИПРОМІНЮВАНЬ 3.1 Методи визначення іонізуючих випромінювань Виявлення радіоактивних речовин та іонізуючих (радіоактивних) випромінювань (нейтронів, гамма-променів, бета- і альфа-частинок ...

Скачать
125490
7
1

... об`єктів, застосування противником ЗМУ; аерозольна протидія технічним засобам розвідки противника та маскування військ та об`єктів аерозолями; ураження противника запалювальної зброї. Задачі: Виявлення, оцінка масштабів та наслідків зруйнуваннь радіаційно-хімічно небезпечних об`єктів та застосування противником ЗМУ. Ліквідація наслідків зруйнувань радіаційно-хімічно небезпечних об`єктів та ...

Скачать
21630
1
2

... , як і при визначенні ОР в повітрі. Примітка: При визначенні ОР в умовах низьких температур необхідно використовувати грілку, яка знаходиться в комплекті приладу. 2. Засоби захисту   2.1 Засоби захисту органів дихання 1 .Фільтруючі протигази ОП, ГП-49, ГП-5, ДП-6 2.  Ізолюючі протигази ІП-49ДІП-5 3.  Респіратори Р-2, РПГГ-67 4.  Прості засоби ПТМ-1, ВМП Ізолюючий протигаз ІП-46 М ...

0 комментариев


Наверх