1.7 Распределение полезной разности температур

Полезные разности температур в корпусах установки находим из условия равенства их поверхностей теплопередачи:


 (21)

где Δtпj, Qj, Kj – соответственно полезная разность температур, тепловая нагрузка, коэффициент теплопередачи для j-го корпуса.

 град

 град

Проверим общую полезную разность температур установки:

 град

Теперь рассчитаем поверхность теплопередачи выпарных аппаратов по формуле (1):

 м2

 м2

 м2

Найденные значения мало отличаются от ориентировочно определённой ранее поверхности Fор. Поэтому в последующих приближениях нет необходимости вносить коррективы на изменение конструктивных размеров аппаратов (высоты, диаметра и числа труб). Сравнение распределённых из условия равенства поверхностей теплопередачи и предварительно рассчитанных значений полезных разностей температур представлено в таблице 4:


Таблица 4 Сравнение распределенных и предварительно рассчитанных значений полезных разностей температур

Параметр Корпус
1 2 3

Распределённые в первом приближении значения Δtп, °С

21,5 17,8 16,54

Предварительно рассчитанные значения Δtп, °С

9,76 14,6 31,48

Как видно, полезные разности температур, рассчитанные из условия равного перепада давления в корпусах и найденные в первом приближении из условия равенства поверхностей теплопередачи в корпусах, существенно различаются. Поэтому необходимо заново перераспределить температуры (давления) между корпусами установки. В основу этого перераспределения температур (давлений) должны быть положены полезные разности температур, найденные из условия равенства поверхностей теплопередачи аппаратов.

 

1.8 Уточнённый расчёт поверхности теплопередачи

 

Второе приближение

В связи с тем, что существенное изменение давлений по сравнению с рассчитанным в первом приближении происходит только в первом и втором корпусах, где суммарные температурные потери незначительны, во втором приближении принимаем такие же значения Δ, Δ, Δ’” для каждого корпуса, как в первом приближении. Полученные после перераспределения температур (давлений) параметры растворов и паров по корпусам представлены в таблице 5.


Таблица 5 Параметры растворов и паров по корпусам после перераспределения температур

Параметры Корпус
1 2 3
Производительность по испаряемой воде w, кг/с 0,83 0,89 0,947
Концентрация растворов х, % 7,9 12,24 30

Температура греющего пара в первый корпус tг1,

143,5 131 112,1

Полезная разность температур Δtп, °С

21,5 17,8 16,54

Температура кипения раствора tк, °С

122 113,21 95,56

Температура вторичного пара tвп, °С

120,26 109,9 84,94

Давление вторичного пара Рвп, МПа

0,27 0,15 0,046

Температура греющего пара tг, °С

119,26 108,9

Температура кипения раствора определяется по формуле (в °С):

Температура вторичного пара определяется по формуле (в °С):

Температура греющего пара определяется по формуле (в °С):


Рассчитаем тепловые нагрузки (в кВт):

Iвп1 = Iг2 = 2711 кДж/кг, Iвп2 = Iг3 = 2695 кДж/кг, Iвп3 = Iбк = 2628,4 кДж/кг.

Расчёт коэффициентов теплопередачи выполним описанным выше методом.

Рассчитаем α1 методом последовательных приближений. Физические свойства конденсата Na2SO4 при средней температуре плёнки сведены в таблице 6.

Примем в первом приближении Δt1 = 2,0 град.

 Вт/(м2∙К)

Таблица 6 Физические свойства конденсата при средней температуре плёнки

Параметр Корпус
1 2 3
Теплота конденсации греющего пара r, кДж/кг 2137,5 2173 2224,4

Плотность конденсата при средней температуре плёнки ρж, кг/м3

924 935 950

Теплопроводность конденсата при средней температуре плёнки λж, Вт/(м∙К)

0,685 0,686 0,685

Вязкость конденсата при средней температуре плёнки μж, Па∙с

0,193 ∙ 10-3

0,212 ∙ 10-3

0,253 ∙ 10-3

 град

 град

Для расчета коэффициента теплопередачи α2 физические свойства кипящих растворов Na2SO4 и их паров приведены в таблице 7.

 Вт/(м2∙К)

Проверим правильность первого приближения по равенству удельных тепловых нагрузок:

 Вт/м2

 Вт/м2

Как видим, q ≠ q. Для второго приближения примем Δt1 = 4 град, пренебрегая изменением физических свойств конденсата при изменении температуры, рассчитываем α1 по соотношению:

Таблица 7. Физические свойства кипящих растворов Na2SO4 и их паров

Параметр Корпус
1 2 3
Теплопроводность раствора λ, Вт/(м∙К) 0,344 0,352 0,378

Плотность раствора ρ, кг/м3

1071 1117 1328
Теплоёмкость раствора с, Дж/(кг∙К) 3876 3750 3205
Вязкость раствора μ, Па∙с 0,26 0,3 0,6
Поверхностное натяжение σ, Н/м 0,0766 0,0778 0,0823

Теплота парообразования rв, Дж/кг

2197∙ 103

2219∙ 103

2268∙ 103

Плотность пара ρп, кг/м3

1,19 0,914 0,514

 Вт/(м2∙К)

Тогда получим:

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Очевидно, что q ≠ q. Для расчёта в третьем приближении строим графическую зависимость удельной тепловой нагрузки q от разности температур между паром и стенкой (рис. 4) и определяем Δt1.

Рис. 4. График зависимости удельной тепловой нагрузки q от разности температур Δt1

Согласно графику можно определить Δt1 = 3,2 град. Отсюда получим:

 Вт/(м2∙К)

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≈ q. Так как расхождение между тепловыми нагрузками не превышает 3%, на этом расчёт коэффициентов α1 и α2 заканчиваем и находим К1:

 Вт/(м2∙К)

Далее рассчитываем коэффициент теплопередачи для второго корпуса К2. Примем в первом приближении Δt1 = 2,0 град. Для определения К2 найдём:

 Вт/(м2∙К)

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≠ q. Для второго приближения примем Δt1 = 5 град, пренебрегая изменением физических свойств конденсата при изменении температуры, рассчитываем α1 по соотношению:

 Вт/(м2∙К)

Тогда получим:

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Очевидно, что q ≠ q. Для расчёта в третьем приближении строим графическую зависимость удельной тепловой нагрузки q от разности температур между паром и стенкой (рис. 5) и определяем Δt1.


Рис. 5. График зависимости удельной тепловой нагрузки q от разности температур Δt1

Согласно графику можно определить Δt1 = 2,2 град. Отсюда получим:

 Вт/(м2∙К)

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≈ q. Так как расхождение между тепловыми нагрузками не превышает 3%, на этом расчёт коэффициентов α1 и α2 заканчиваем и находим К2:

 Вт/(м2∙К)

Рассчитаем теперь коэффициент теплопередачи для третьего корпуса К3. Примем в первом приближении Δt1 = 2,0 град.

 Вт/(м2∙К)

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≠ q. Для второго приближения примем Δt1 = 1 град, пренебрегая изменением физических свойств конденсата при изменении температуры, рассчитываем α1 по соотношению:

 Вт/(м2∙К)

Тогда получим:

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Очевидно, что q ≠ q. Для расчёта в третьем приближении строим графическую зависимость удельной тепловой нагрузки q от разности температур между паром и стенкой (рис. 6) и определяем Δt1.

Рис. 6. График зависимости удельной тепловой нагрузки q от разности температур Δt1


Согласно графику можно определить Δt1 = 1,85 град. Отсюда получим:

 Вт/(м2∙К)

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≈ q. Так как расхождение между тепловыми нагрузками не превышает 3%, на этом расчёт коэффициентов α1 и α2 заканчиваем и находим К3:

 Вт/(м2∙К)

Распределение полезной разности температур:

 град

 град

 град

Проверка суммарной полезной разности температур:

 град

Сравнение полезных разностей температур, полученных во втором и первом приближениях, представлено в таблице 8:


Таблица 8 Сравнение полезных разностей температур

Параметр Корпус
1 2 3

Распределённые во втором приближении значения Δtп, °С

16,2 18,2 21,45

Распределённые в первом приближении значения Δtп, °С

21,5 17,8 16,54

Как видно, полезные разности температур, рассчитанные в первом приближении и найденные во втором приближении из условия равенства поверхностей теплопередачи в корпусах, существенно различаются. Поэтому необходимо заново перераспределить температуры (давления) между корпусами установки. В основу этого перераспределения температур (давлений) должны быть положены полезные разности температур, найденные во втором приближении.

Третье приближение

В связи с тем, что существенное изменение давлений по сравнению с рассчитанным во втором приближении происходит только в первом и втором корпусах, где суммарные температурные потери незначительны, в третьем приближении принимаем такие же значения Δ, Δ, Δ’” для каждого корпуса, как в первом и втором приближениях. Полученные после перераспределения температур (давлений) параметры растворов и паров по корпусам представлены в таблице 9.

Температура кипения раствора определяется по формуле (в °С):


Таблица 9 Параметры растворов и паров по корпусам после перераспределения температур

Параметры Корпус
1 2 3
Производительность по испаряемой воде w, кг/с 0,83 0,89 0,947
Концентрация растворов х, % 7,9 12,24 30

Температура греющего пара в первый корпус tг1,

143,5 131 112,1

Полезная разность температур Δtп, °С

16,2 18,2 21,45

Температура кипения раствора tк, °С

127,3 112,8 90,65

Температура вторичного пара tвп, °С

125,6 109,5 80

Температура греющего пара tг, °С

- 124,6 108,5

Теплота парообразования rв, Дж/кг

2713 2688 2642

Температура вторичного пара определяется по формуле (в °С):

Температура греющего пара определяется по формуле (в °С):

Рассчитаем тепловые нагрузки (в кВт):

Iвп1 = Iг2 = 2713 кДж/кг, Iвп2 = Iг3 = 2688 кДж/кг, Iвп3 = Iбк = 2642 кДж/кг.

Расчёт коэффициентов теплопередачи выполним описанным выше методом.

Рассчитаем α1 методом последовательных приближений. Физические свойства конденсата Na2SO4 при средней температуре плёнки сведены в таблице 10.

Таблица 10. Физические свойства конденсата при средней температуре плёнки

Параметр Корпус
1 2 3
Теплота конденсации греющего пара r, кДж/кг 2137,5 2173 2224,4

Плотность конденсата при средней температуре плёнки ρж, кг/м3

924 935 950

Теплопроводность конденсата при средней температуре плёнки λж, Вт/(м∙К)

0,685 0,686 0,685

Вязкость конденсата при средней температуре плёнки μж, Па∙с

0,193 ∙ 10-3

0,212 ∙ 10-3

0,253 ∙ 10-3

Примем в первом приближении Δt1 = 2,0 град.

 Вт/(м2∙К)

 град

 град

Для расчета коэффициента теплопередачи α2 физические свойства кипящих растворов Na2SO4 и их паров приведены в таблице 11.

Таблица 11. Физические свойства кипящих растворов Na2SO4 и их паров

Параметр Корпус
1 2 3
Теплопроводность раствора λ, Вт/(м∙К) 0,344 0,352 0,378

Плотность раствора ρ, кг/м3

1071 1117 1328
Теплоёмкость раствора с, Дж/(кг∙К) 3876 3750 3205
Вязкость раствора μ, Па∙с 0,26 0,3 0,6
Поверхностное натяжение σ, Н/м 0,0766 0,0778 0,0823

Теплота парообразования rв, Дж/кг

2182∙ 103

2220∙ 103

2281∙ 103

Плотность пара ρп, кг/м3

1,388 0,903 0,433

 Вт/(м2∙К)

Проверим правильность первого приближения по равенству удельных тепловых нагрузок:

 Вт/м2

 Вт/м2

Как видим, q ≠ q. Для второго приближения примем Δt1 = 1,9 град, пренебрегая изменением физических свойств конденсата при изменении температуры, рассчитываем α1 по соотношению:

 Вт/(м2∙К)

Тогда получим:

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≈ q. Так как расхождение между тепловыми нагрузками не превышает 3%, на этом расчёт коэффициентов α1 и α2 заканчиваем и находим К1:

 Вт/(м2∙К)

Далее рассчитываем коэффициент теплопередачи для второго корпуса К2. Примем в первом приближении Δt1 = 2,0 град. Для определения К2 найдём:

 Вт/(м2∙К)

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≠ q. Для второго приближения примем Δt1 = 2,3 град.

 Вт/(м2∙К)

Тогда получим:

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≈ q. Так как расхождение между тепловыми нагрузками не превышает 3%, на этом расчёт коэффициентов α1 и α2 заканчиваем и находим К2:

 Вт/(м2∙К)

Рассчитаем теперь коэффициент теплопередачи для третьего корпуса К3. Примем в первом приближении Δt1 = 2,0 град.

 Вт/(м2∙К)

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≠ q. Для второго приближения примем Δt1 = 3 град.

 Вт/(м2∙К)

Тогда получим:

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≈ q. Так как расхождение между тепловыми нагрузками не превышает 3%, на этом расчёт коэффициентов α1 и α2 заканчиваем и находим К3:

 Вт/(м2∙К)

Распределение полезной разности температур:

 град

 град

Проверка суммарной полезной разности температур:

 град

Сравнение полезных разностей температур, полученных во втором и первом приближениях, представлено в таблице 12:

Таблица 12 Сравнение полезных разностей температур

Параметр Корпус
1 2 3

Распределённые в третьем приближении значения Δtп, °С

18,24 17,92 19,68

Распределённые во втором приближении значения Δtп, °С

16,2 18,2 21,45

Как видно, полезные разности температур, рассчитанные во втором приближении и найденные в третьем приближении из условия равенства поверхностей теплопередачи в корпусах, различаются более, чем на 5%. Поэтому необходимо заново перераспределить температуры (давления) между корпусами установки. В основу этого перераспределения температур (давлений) должны быть положены полезные разности температур, найденные в третьем приближении.

Четвертое приближение

В связи с тем, что существенное изменение давлений по сравнению с рассчитанным в третьем приближении происходит только в первом и втором корпусах, где суммарные температурные потери незначительны, то в четвертом приближении принимаем такие же значения Δ, Δ, Δ’” для каждого корпуса, как в первом, втором и третьем приближениях. Полученные после перераспределения температур (давлений) параметры растворов и паров по корпусам представлены в таблице 13.

Температура кипения раствора определяется по формуле (в °С):

Температура вторичного пара определяется по формуле (в °С):

Таблица 13 Параметры растворов и паров по корпусам после перераспределения температур

Параметры Корпус
1 2 3
Производительность по испаряемой воде w, кг/с 0,83 0,89 0,947
Концентрация растворов х, % 7,9 12,24 30

Температура греющего пара в первый корпус tг1,

143,5 131 112,1

Полезная разность температур Δtп, °С

18,24 17,92 19,68

Температура кипения раствора tк, °С

125,26 113,08 92,42

Температура вторичного пара tвп, °С

123,52 109,78 81,8

Температура греющего пара tг, °С

- 122,52 108,78

Температура греющего пара определяется по формуле (в °С):


Рассчитаем тепловые нагрузки (в кВт):

Iвп1 = Iг2 = 2717 кДж/кг, Iвп2 = Iг3 = 2695 кДж/кг, Iвп3 = Iбк = 2623,4 кДж/кг.

Расчёт коэффициентов теплопередачи выполним описанным выше методом.

Рассчитаем α1 методом последовательных приближений. Физические свойства конденсата Na2SO4 при средней температуре плёнки сведены в таблице 14.

Таблица 14 Физические свойства конденсата при средней температуре плёнки

Параметр Корпус
1 2 3
Теплота конденсации греющего пара r, кДж/кг 2137,5 2173 2224,4

Плотность конденсата при средней температуре плёнки ρж, кг/м3

924 935 950

Теплопроводность конденсата при средней температуре плёнки λж, Вт/(м∙К)

0,685 0,686 0,685

Вязкость конденсата при средней температуре плёнки μж, Па∙с

0,193 ∙ 10-3

0,212 ∙ 10-3

0,253 ∙ 10-3

Примем в первом приближении Δt1 = 2,0 град.

 Вт/(м2∙К)

 град

 град

Для расчета коэффициента теплопередачи α2 физические свойства кипящих растворов Na2SO4 и их паров приведены в таблице 15.

Таблица 15 Физические свойства кипящих растворов Na2SO4 и их паров

Параметр Корпус
1 2 3
Теплопроводность раствора λ, Вт/(м∙К) 0,344 0,352 0,378

Плотность раствора ρ, кг/м3

1071 1117 1328
Теплоёмкость раствора с, Дж/(кг∙К) 3876 3750 3205
Вязкость раствора μ, Па∙с 0,26 0,3 0,6
Поверхностное натяжение σ, Н/м 0,0766 0,0778 0,0823

Теплота парообразования rв, Дж/кг

2198∙ 103

2234∙ 103

2305∙ 103

Плотность пара ρп, кг/м3

1,243 0,8254 0,2996

 Вт/(м2∙К)

Проверим правильность первого приближения по равенству удельных тепловых нагрузок:

 Вт/м2

 Вт/м2

Как видим, q ≠ q. Для второго приближения примем Δt1 = 2,3 град, пренебрегая изменением физических свойств конденсата при изменении температуры, рассчитываем α1 по соотношению:

 Вт/(м2∙К)

Тогда получим:

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≈ q. Так как расхождение между тепловыми нагрузками не превышает 3%, на этом расчёт коэффициентов α1 и α2 заканчиваем и находим К1:

 Вт/(м2∙К)

Далее рассчитываем коэффициент теплопередачи для второго корпуса К2. Примем в первом приближении Δt1 = 2,0 град. Для определения К2 найдём:

 Вт/(м2∙К)

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≠ q. Для второго приближения примем Δt1 = 2,2 град.

 Вт/(м2∙К)

Тогда получим:

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≈ q. Так как расхождение между тепловыми нагрузками не превышает 3%, на этом расчёт коэффициентов α1 и α2 заканчиваем и находим К2:

 Вт/(м2∙К)

Рассчитаем теперь коэффициент теплопередачи для третьего корпуса К3. Примем в первом приближении Δt1 = 2,0 град.

 Вт/(м2∙К)

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≠ q. Для второго приближения примем Δt1 = 2,5 град.

 Вт/(м2∙К)

Тогда получим:

 град

 град

 Вт/(м2∙К)

 Вт/м2

 Вт/м2

Как видим, q ≈ q. Так как расхождение между тепловыми нагрузками не превышает 3%, на этом расчёт коэффициентов α1 и α2 заканчиваем и находим К3:

 Вт/(м2∙К)

Распределение полезной разности температур:

 град

 град

Проверка суммарной полезной разности температур:

 град

Сравнение полезных разностей температур, полученных в четвертом и третьем приближениях, представлено в таблице 16:

Таблица 16 Сравнение полезных разностей температур

Параметр Корпус
1 2 3

Распределённые в четвертом приближении значения Δtп, °С

17,56 18,1 20,2

Распределённые в третьем приближении значения Δtп, °С

18,24 17,92 19,68

Различия между полезными разностями температур по корпусам в первом и втором приближениях не превышают 5 %. Определяем поверхность теплопередачи выпарных аппаратов [1]:

 м2

 м2

 м2

По ГОСТ 11987 – 81 выбираем выпарной аппарат со следующими характеристиками:

 



Информация о работе «Расчёт многокорпусной выпарной установки»
Раздел: Химия
Количество знаков с пробелами: 82811
Количество таблиц: 25
Количество изображений: 11

Похожие работы

Скачать
75004
16
10

... расхода электрической мощности для перекачивания большого объёма раствора по контуру аппарата. Во-вторых, эти аппараты имеют повышенную металлоёмкость. Учитывая то, что при создании выпарной установки для концентрирования квасного сусла удельные показатели по расходу пара, электроэнергии и охлаждающей воды не должны превышать показателей, приведенных в заявке заказчика, а также специфику работы ...

Скачать
31244
12
3

... этих факторов должно учитываться при технико-экономическом сравнении аппаратов и выборе оптимальной конструкции. Ниже приводятся области преимущественного использования выпарных аппаратов различных типов. Для выпаривания растворов небольшой вязкости ~8 10-3 Па с, без образования кристаллов чаще всего используются вертикальные выпарные аппараты с многократной естественной циркуляцией. Из них ...

Скачать
47919
7
0

... м3/мин Зная объёмную производительность и остаточное давление, по каталогу (7, стр. 188) подбираем вакуум-насос типа ВВН-3 с мощностью на валу N = 6,5 кВт. 7. Расчет и выбор вспомогательного оборудования выпарной установки. 7.1. Конденсатоотводчики. Для отвода конденсата, образующегося при работе теплообменных аппаратов, в зависимости от давления пара, применяют различные виды устройств. ...

Скачать
29185
6
1

... установки – расчет материальных потоков, затрат тепла и энергии, размеров основного аппарата, расчет и выбор вспомогательного оборудования, входящего в технологическую схему установки. Задание на курсовое проектирование Рассчитать и спроектировать трехкорпусную выпарную установку непрерывного действия для концентрирования водного раствора  по следующим данным: 1.  Производительность установки ...

0 комментариев


Наверх