2.3. Получение кобальта

Кобальт — относительно редкий металл, и богатые им месторождения в настоящее время практически исчерпаны. Поэтому кобальтсодержащее сырье (часто это никелевые руды, содержащие кобальт как примесь) сначала обогащают, получают из него концентрат. Далее для извлечения кобальта концентрат или обрабатывают растворами серной кислоты или аммиака, или методами пирометаллургии перерабатывают в сульфидный или металлический сплав. Этот сплав затем выщелачивают серной кислотой. Иногда для извлечения кобальта проводят сернокислотное «кучное» выщелачивание исходной руды (измельченную руду размещают в высоких кучах на специальных бетонных площадках и сверху поливают эти кучи выщелачивающим раствором).

Для очистки кобальта от сопутствующих примесей все более широко применяют экстракцию. Наиболее сложная задача при очистке кобальта от примесей — это отделение кобальта от наиболее близкого к нему по химическим свойствам никеля. Раствор, содержащий катионы двух этих металлов, часто обрабатывают сильными окислителями — хлором или гипохлоритом натрия NaOCl

2СоСl2 + NaClO + 4NaOH + H2O Õ 2Co(OH)3↓ + 5NaCl

чёрный осадок Co(OH)3 прокаливают для удаления воды, а полученный оксид Со3О4 восстанавливают водородом или углеродом. Металлический кобальт, содержащий до 2-3% примесей (никель, железо, медь), может быть очищен электролизом.

2.4. Химические свойства кобальта

нормальный электродный потенциал реакции Со – 2е ↔ Со2+

φ0 = - 0,27 В, а реакции Со – 3е ↔ Со3+ φ0 = +0,4 В. Окислительно – восстановительный потенциал кобальта в кислых растворах для реакции Со2+  Õ Со3+ + е равен 1,81 В, а реакции Со Õ Со3+ + +3е 0,4 В. Степень окисления +2,+3. Электрохимический эквивалент Со2+ равен 0,306мг/Кл, а Со3+ 0,204мг/Кл. В простых соединениях наиболее устойчив ион Со2+ , в комплексных - ион Со3+. В электрохимическом ряду напряжений металлов кобальт расположен между железом и никелем. Он взаимодействует почти со всеми другими элементами. Так, при нагревании кобальт легко соединяется с галогенами, образуя галогениды. При действии фтора на порошок кобальта или СоСl2 кобальт может восстановиться до 3-валентного и образовать коричневый фторид СоF3 . Также при нагревании кобальт взаимодействует с серой, селеном, фосфором, мышьяком, сурьмой, углеродом, кремнием и бором, причем проявляет валентность от +1 до +6. Сульфиды кобальта образуются в результате взаимодействия свежевосстановленного кобальтового порошка с Н2S. При 400 ˚С образуется Со3S4, а при 700˚С – СоS. Сульфид образуется и при взаимодействии кобальта с сернистым ангидридом при 800˚С.

В разбавленных соляной и серной кислотах кобальт медленно растворяется с выделением водорода и образованием хлорида СоСl2 или сульфата СоSO4. Разбавленная азотная кислота растворяет кобальт с выделением оксидов азота и образованием нитрата Со(NO3)2. Концентрированная азотная кислота пассивирует кобальт. Все соли кобальта хорошо растворимы в воде. Едкие щелочи осаждают из водных растворов солей синий гидроксид Со(ОН)2 .

При взаимодействии с газообразным аммиаком при 350-450 ˚С кобальт образует нитриды Со3N и Co2N2 , которые, не являются устойчивыми.

Кобальт реагирует с водой при нагревании и в интервале 422-921˚С вытесняет водород, образуя СоО.

2.5. Химические свойства соединений кобальта

Известны окислы и гидроокиси двух-, трех- и четырехвалентного кобальта.

Окислы и гидроокиси двухвалентного кобальта. Закись кобальта СоО образуется при окислении металлического кобальта парами воды при температуре красного каления, а также при нагревании карбонатов, сульфатов.

Со2+2О t красного каления Со + Н2

Закись кобальта имеет серо-зеленый цвет с различными оттенками в зависимости от способа получения.

Закись кобальта легко растворяется в соляной, серной, азотной и других сильных кислотах, труднее – в уксусной, фтористоводородной кислотах с образованием соответствующих солей двухвалентного кобальта розового цвета

СоО + 2НСl Õ CoCl2 + H2O

Гидроокись двухвалентного кобальта образуется при добавлении едкого натра или гидроокиси аммония к растворам солей двухвалентного кобальта

2NaOH + CoS Õ Co(OH)2 + Na2S

При обычной температуре, особенно без доступа воздуха, и при осаждении небольшим избытком раствора гидроокиси натрия сначала образуется синий осадок. Синий осадок постепенно становится фиолетовым и, наконец, розовым.

Гидроокись кобальта окисляется кислородом воздуха, превращаясь в Со(ОН)3 с изменением цвета из розового в бурый. Окисление ускоряется добавлением хлора, брома или перекиси водорода.

При незначительном нагревании происходит превращение Co(OH)2  в НСоО2, а затем в Со3О4; при более высокой температуре Со3О4 превращается в СоО.

Закись-окись кобальта Со3О4 образуется при нагревании закиси кобальта СоО (400-900°С) и при сгорании пирофорного кобальта на воздухе. Она получается также при нагревании гидроокиси кобальта

Со(ОН)3120-190°С  НСоО2 240-300°С Со3О4

Со3О4 770-920°С  3СоО + ½ О2

 

Закись-окись Со3О4  медленно растворяется в кислотах с образованием солей двухвалентного кобальта и выделением свободного кислорода. Растворение в соляной кислоте сопровождается выделением хлора

Окись Со2О3 и гидроокись трехвалентного кобальта Со(ОН)3.

Со2О3 +H2S CoS + O2  + H2O

Co(OH)3 + H2S CoS + O2 + H2O

Простые ионы трехвалентного кобальта в водных растворах неустойчивы, они легко восстанавливаются до ионов двухвалентного кобальта.

Окись четырехвалентного кобальта СоО2.

Этот окисел частично образуется при получении Со2О3. Он неустойчив, легко разлагается с выделением кислорода.

Соли кобальта.

Сульфид кобальта СоS – черного цвета, выделяется пропусканием сероводорода в нейтральные воды раствора солей кобальта, содержащие ацетат натрия или добавлением раствора сульфида аммония и слабощелочным водным раствором солей кобальта.

Образования, которые можно получить при действии сульфида аммония (или сероводорода) на водные растворы солей кобальта, при прямом соединении элементов при высоких температурах можно также получить сульфид кобальта Со5S4 и др. в природе встречается минерал линнеит Со3S4, который можно получить искусственно.

Сульфат кобальта СоSO4 и СоSO4 ∙ 7 H2O. Безводный сульфат кобальта используется как весовая форма при определении кобальта.

Тиосульфат кобальта СоS2О3 мало диссоциирует.

Пирофосфаты, арсенаты, карбонаты.

 

В водных растворах установлено потенциометрическим и спектрофотометрическим методами существование комплексного аниона СоР2О7 2-. Кондуктометрический метод указывает также на образование более сложного комплекса Со(Р2О7)2 6-. Кроме того изучены полифосфатные соединения кобальта.

 

Галогениды.

 

СоСl2, СоF2, СоJ2 хорошо растворимы в этиловом спирте, диэтиловом эфире , ацетоне и других органических растворителях, с образованием окрашенных в синий цвет растворов. Бромид кобальта СоВr2 мало растворим в этиловом и метиловом спиртах и в диэтиловом эфире.

Хлориды кобальта при растворении в воде образуют растворы розового цвета; однако при введении раствора соляной кислоты или различных органических растворителей розовая окраска переходит синюю или голубую.

Часть 3

Заключение.

Биологическая роль кобальта для сельского хозяйства.

 

Кобальт всегда содержится в организмах животных и растений, участвует в обмене веществ. Кобальт относится к числу микроэлементов, то есть постоянно присутствует в тканях растений и животных. Некоторые наземные растения и морские водоросли способны накапливать кобальт. Входя в молекулу витамина В12 (кобаламина), кобальт участвует в важнейших процессах животного организма — кроветворении, функциях нервной системы и печени, ферментативных реакциях.

Кобальт участвует в ферментативных процессах фиксации атмосферного азота клубеньковыми бактериями.

 Соединения кобальта обязательно входят в состав микроудобрений. Однако избыток кобальта для человека вреден. ПДК пыли кобальта в воздухе 0,5 мг/м3, в питьевой воде допустимое содержание солей кобальта 0,01 мг/л. Токсическая доза — 500 мг. Особенно токсичны пары октакарбонила кобальта Со2(СО)8.

 Недостаток его в почве и кормах вызывает у животных тяжелое заболевание «сухотку» или «лизуху».

Большое практическое значение имеет искусственно получаемый радионуклид кобальта 60Со (период полураспада Т1/2 5,27 года). Испускаемое этим радионуклидом гамма-излучение обладает достаточно мощной проникающей способностью, и «кобальтовые пушки» — устройства, снабженные 60Со, широко используют при дефектоскопии, например, сварных швов газопроводов, в медицине для лечения онкологических заболеваний и для других целей. Используется 60Со и в качестве радионуклидной метки.

4 часть

Литература.

 

1.  Свойства элементов в двух книгах. Под общей редакцией М.Е.Дрица. книга 2. Москва изд. Дом «Руда и металлы» 2003г.

2.  Химия с сельскохозяйственным анализом. Издание 2, переработанное и дополненное. И.К.Цитович Москва «Колос» 1974г.

3.  Аналитическая химия кобальта. И.В.Пятницкий Изд. «Наука» Москва 1965г.

4.  «Большая энциклопедия Кирилла и Мефодия 2001»


Информация о работе «характеристика кобальта»
Раздел: Химия
Количество знаков с пробелами: 13874
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
82128
63
0

... государственный индустриальный университетФакультет электротермических технологийКафедра электрометаллургии стали и ферросплавов Дипломная работа на тему: Термодинамические характеристики расплавов на основе железа Руководитель: Воробьев Анатолий Александрович Исполнитель: Бородин Игорь Сергеевич студент группы ЭМ- ...

Скачать
79295
0
8

... на соединениях других металлов, относящихся к диацидотетраминовому типу. Кроме производных Со(Ш) известны соли диацидотетраминового типа, образующиеся от Сr(III), Rh (III), Ir(III) и Pt(IV). Механизм замещения реакций комплексов кобальта (III) Поскольку рассмотрение реакций лабильных комплексов не дало возможности четко определить вероятный механизм реакции, необходимо рассмотреть более ...

Скачать
33370
10
0

... интенсивным загрязнением окружающей среды могут стать зонами сильных гехногенных микро-элементозов. таблица 1. рабочая классификация микроэлементозов человека (по: Авцын, жаворонков и др., 1991). МТОЗы Основные формы заболеваний   Краткая характеристика   Природные Эндогенные 1. Врожденные При врожденных микроэлементозах в основе заболевания может лежать микроэлементоз ...

Скачать
99247
21
0

... и красивых защитно-декоративных пленок на латунных и стальных поверхностях ювелирных изделий, корпусов наручных часов и других товаров. ЗАКЛЮЧЕНИЕ Представленный реферат посвящен товароведной характеристике цветных металлов и изделий из них. В первом разделе реферата нами изучены подходы к классификации цветных металлов и какие металлы вообще относят к цветным (коротко изложим суть): Медь ...

0 комментариев


Наверх