3. УСТРОЙСТВО ПЕСЧАНЫХ И ГРУНТОВЫХ ПОДУШЕК

Устройство песчаных и грунтовых подушек является одним из распространенных, технически целесообразных и экономически выгодных методов образования искусственных оснований. В качестве материала для устройства подушек применяют пески и крупнообломочные грунты: гравий, щебень и пр. В отдельных случаях, главным образом в гидротехнических сооружениях, применяют подушки из каменной наброски. Кроме того, при устройстве оснований на просадочных грунтах применяют подушки из грунта, однородного с грунтом естественного основания. Устройство песчаных подушек не может быть рекомендовано, если отмечены большие колебания уровня грунтовых вод. Грунтовые воды могут вымывать песок из подушки или заиливать его. В первом случае могут возникнуть большие дополнительные осадки, а во втором в заиленной подушке может возникнуть пучение. Наличие напорных вод в пределах воды песчаной подушки при заложении подошвы фундамента выше глубины промерзания также может привести к пучению подушки при замерзании. Основным вопросом при проектировании песчаных подушек является назначение их размеров в плане и по высоте. На уровне подошвы фундамента песчаная подушка может воспринимать среднее давление, равное расчетному давлению на грунт подушки, с учетом его уплотнения. Среднее давление, переданное на подушку, распределяется в ее толще на большую площадь. Поэтому среднее давление в уровне подошвы подушки будет меньше. Это давление будет воспринимать грунт природного сложения. Следовательно, среднее давление на уровне подошвы подушки должно быть не больше чем расчетное давление на подстилающий грунт природного сложения.

4. ФИЗИКО-ХИМИЧЕСКОЕ ЗАКРЕПЛЕНИЕ ГРУНТОВ

Физико-химическое изменение свойств грунтов оснований производится в различных целях. В одних случаях необходимо общее окаменение массива искусственного основания, в других случаях достаточно только придать основанию водонепроницаемость. В соответствии с этим применяют цементацию, силикатизацию, битумизацию, электрозакрепление и термозакрепление грунтов. Цементация — один из самых старых сиособов закрепления рыхлых крупнообломочпых и крунпопссчапых грунтов. Этот метод состоит в том, что н закрепляемый грунт подается под давлением через специальные трубкнинъекторы суспензия цемент — вода (цементное молоко). После окончания нагнетания раствор постепенно твердеет и образует с грунтом прочное, неразмынаемое основание. Недостаток этого метода — сравнительно ограниченная область его применения; для успешной цементации необходимо, чтобы размеры пор в грунте были покрайней мере в 4—5 раз больше размеров частиц цемента. Такое соотношение позволяет применять цементацию только в крупнообломочных и крупнопесчаных грунтах и не дает возможности использовать ее в грунтах с более мелкими фракциями. Инъекторы для цементации грунтов состоят из трубки диаметром 19—38 мм. Трубка заканчивается коническим наконечником, облегчающим ее погружение. В нижней части трубки сделаны отверстия для выхода цементного молока. При небольшой глубине погружения инъекторы забивают в грунт, а при больших глубинах опускают в заранее пробуренные скважины. Перед тем как начать нагнетание цементного молока, грунт промывают чистой водой под напором, чтобы вынести наиболее мелкие фракции. Состав цементного молока (цемент —вода) колеблется в пределах от 1 : 10 до 1 :0,4, в зависимости от степени водопоглощения грунта. Радиус закрепления в зависимости от размера пор колеблется в пределах 0,5—1,5 м. Давление, под которым подается цементное молоко, в среднем равно 0,025— 0,1 МПа на каждый метр погружения. Силикатизация применима в грунтах с коэффициентами фильтрации 2—80 м/сут, т. е. охватывает область средних, мелких и даже пылеватых песков. Основой силикатизации является нагнетание в грунт раствора жидкого стекла Na2O-nSiO2. Выпадающий в результате химических реакций гель кремниевой кислоты SiO2 связывает между собой частицы грунта подобно цементу. В различных грунтах по-разному используют метод силикатизации. Наибольшее распространение получил метод двухрастворной силикатизации: в грунт последовательно нагнетают раствор жидкого стекла и вслед за ним — раствор хлористого кальция СаС12. В результате реакции образуется связывающий частицы грунта гель кремневой кислоты SiO2, гидрат окиси кальция Са(ОН2) и хлористый натрий NaCl. Однорастворная силикатизация заключается в том, что реакция в растворе, составленном из жидкого стекла и фосфорной кислоты Н3РО4, протекает медленно — в течение 4—10 ч, поэтому становится возможным нагнетание такого сложного раствора. Преимущество однорастворной силикатизации очевидно: вместо последовательного нагнетания двух растворов нагнетается только один. Однако прочность грунта, закрепленного двухрастворной силикатизацией, выше и доходит до 15—35-105 Па, в то время как прочность грунтов, закрепленных однораствор- ной силикатизацией, составляет только 4—5- 10s Па. В лёссовых грунтах, в составе которых, как правило, уже есть соли кальция, возможно закрепление нагнетанием только одного раствора жидкого стекла. Предел прочности лёссовых грунтов после закрепления составляет примерно 6—8- 10s Па. Радиус закрепления грунтов силикатизацией. достигает 0,3—1 м и зависит от коэффициента фильтрации грунта. Битумизация как метод закрепления грунта возможна горячая и холодная. При горячей битумизации в грунт распространен этот метод для создания водонепроницаемости в трещиноватых скальных грунтах. В этих случаях битум, разогретый только до 200—220е С, тампонирует трещины в радиусе до 10 м. Для поддержания высокой температуры в битуме инъектор имеет внутреннюю трубку или стержень, изолированную от внешней трубки. Через внешнюю и внутреннюю трубку инъектора пропускается электрический ток, поддерживающий высокую температуру в битуме. Метод горячей битумизации требует для подачи битума высокого давления, доходящего до 2,5—3 МПа. Для устройства искусственных оснований более применима холодная битумизация, заключающаяся в том, что в грунт под давлением подается битумная эмульсия, состоящая из битума, расщепленного в воде при помощи эмульгатора на мельчайшие взвешенные частицы (примерно 60% битума и 40% воды). Введенная в грунт битумная эмульсия обладает большой подвижностью и заполняет поры грунта. При увеличении давлении вода отжимается дальше, а частички битума выполняют из эмульсии, слипаются в общую массу и плотни заполняют поры грунта. Кроме битума для закрепления грунта в последнее время стали применять синтетические смолы. Практика закрепления грунта показывает, что при наличии органических и неорганических кислот такие смолы затвердевают за несколько часов. Электроосмотическое закрепление грунтов начинает получать все большее распространение и заключается в том, что в грунт параллельными рядами забивают электроды. Расстояние между электродами 0,6—1 м. Через электроды пропускается постоянный электрический ток напряжением 30—100 В. Глинистые грунты, подвергнутые обработке постоянным электрическим током, осушаются и уплотняются, причем процесс уплотнения необратим. Для удаления излишней воды из грунта электроды, служащие катодом, делают из полых трубок, через которые и откачивают воду. Если сделать полым также и анод, то через него можно вводить в грунт раствор хлористого кальция и тем самым усилить действие электрозакрепления грунта, превратив его в электрохимическое.


СПИСОК ЛИТЕРАТУРЫ

1.  Байков В.Н., Попов Г.И. «Строительные конструкции», М., Высшая школа, 1986

2.  Цай Т.Н., Вородич М.К., Богданович А.Ф. «Строительные конструкции» том1, М., Стройиздат, 1977


Информация о работе «Основания и фундаменты промышленных зданий»
Раздел: Строительство
Количество знаков с пробелами: 40731
Количество таблиц: 0
Количество изображений: 11

Похожие работы

Скачать
54779
18
0

... 12,0 см выполняется (значение Su = 12,0 см принято по таблице прил.4 СНиП 2.02.01-83). Расчетная схема и эскиз фундамента на распределительной подушке приведена на Рис.6. 5. Расчет и проектирование варианта фундамента на искусственном основании, в виде песчаной распределительной подушки 5.1 Глубина заложения фундамента Аналогично фундаменту на естественном основании назначаем глубину ...

Скачать
23501
9
0

...  кПа Значение эксцентриситета внешней нагрузки составит Следовательно, фундамент необходимо рассчитывать как центрально нагруженный. Исходя из условия Р11 < R, конструируем фундамент: где  - среднее давление под подошвой фундамента от нагрузок для расчета оснований по деформациям, кПа  - расчетный вес фундамента - расчетный вес грунта на уступах фундамента Найдем вес ...

Скачать
49481
7
0

... ПРОЕКТИРОВАНИЕ СТРОЙГЕНПЛАНА. Общие положения. Строительный генеральный план является вторым по значимости документом проекта организации строительства (ПОС) или проекта производства работ (ППР). Он устанавливает: границы строительной площадки, расположение постоянных, строящихся и временных зданий и сооружений, действующих, вновь прокладываемых и временных подземных, надземных и воздушных сетей и ...

Скачать
103427
25
24

... 1991. - 767 с. 7.  Бондаренко В.М., Римшин В.И. Примеры расчёта железобетонных и каменных конструкций: Учеб. пособие. - М.: Высш. шк., 2006. - 504 с. 8.  Тимофеев Н.А. Проектирование несущих железобетонных конструкций многоэтажного промышленного здания: Метод. указания к курсовой работе и практическим занятиям для студентов спец. "Строительство ж. д., путь и путевое хозяйство". - М.: МИИТ, 2004. ...

0 комментариев


Наверх