3. Обработка сигналов

В этом разделе мы рассмотрим когерентные оптические методы обработки пространственно-представимых «сигналов». Такими сигналами могут быть изображения или другие формы представления данных (например, записи электроэнцефалограмм).

3.1 Обработка изображений

После того как изображение зарегистрировано па некотором носителе, может, однако, потребоваться его некоторая модификация перед тем, как оно примет вид, удобный или желаемый для наблюдения человеком. Все методы обработки изображений, которые мы здесь рассмотрим, основаны па преобразовании имеющихся данных в соответствии с известными правилами. Следовательно, эти методы не добавляют никакой новой информации. Они скорее придают вес информации, уже имеющейся в изображении, путем учета интересов ее пользователя.

Обработка изображений может быть осуществлена на ЭВМ, а также и с помощью когерентной оптики. Обработка изображений на ЭВМ является более универсальной и гибкой, чем когерентная оптическая обработка изображений, поэтому цифровые методы обработки предпочтительны, если они не исключаются стоимостью, удобством или объемом вычислений. Во всех этих случаях оптические методы обработки изображений имеют преимущество. Что касается стоимости, то цифровая обработка требует устройства преобразования изображения из аналоговой формы в цифровую для его ввода в ЭВМ, собственно ЭВМ для преобразования изображения требуемым образом и устройства отображения для представления обработанного изображения наблюдателю. Все эти устройства оказываются более дорогими, чем весь когерентный оптический процессор (входное устройство протяжки пленки, линзы, лазер и выходной экран). Кроме того, оптические вычислительные устройства имеют большое преимущество в скорости обработки информации. Постоянные операции по обработке изображений могут выполняться оптически со скоростью смены пленки на входе оптического процессора. Информационная пропускная способность оптического процессора невероятно велика по сравнению с цифровыми ЭВМ. Это краткое обсуждение, разумеется, не дает достаточной информации для выбора между оптической и цифровой обработкой изображений, но предлагает лишь некоторые предварительные соображения. Положение усложнилось с появлением гибридных оптикоэлектронных вычислительных устройств, которые, в частности, рассмотрены в обзоре Кейсесента [1.36].

Биомедицинские изображения, по-видимому, не содержат достаточно информации, чтобы создать трудности для цифровых ЭВМ, хотя проблемы стоимости и удобства могут потребовать применения оптических методов обработки изображений при условии, что они могут обеспечить выполнение требуемых операций.

В биологии и медицине полезными могут быть следующие виды обработки изображений:

1)  восстановление резкости изображений (когда нерезкие изображения, искаженные вследствие относительного перемещения объекта и камеры в процессе съемки или из-за плохой фокусировки, могут быть улучшены, если в исходных изображениях имеется достаточное отношение сигнал/шум);

2)  подавление шума (когда ослабляется влияние статистически известных шумовых факторов);

3)  сглаживание (когда априори желаемые характеристики изображения, подчеркиваются, а априори нежелательные детали ослабляются);

4)  подчеркивание деталей (когда улучшаются все детали с определенными характеристиками).


3.2 Обработка биомедицинских данных

По ряду причин когерентная оптическая обработка почти периодических биомедицинских данных [электроэнцефалограмм (ЭЭГ), электрокардиограмм (ЭКГ), фонокардиограмм (ФКГ) и др.] является очень привлекательной. Во-первых, оптическими методами легко выполняется большинство операций, которые желательно осуществлять над такими данными (частотный анализ, взаимная корреляция, сглаживание, фильтрация в полосе частот, согласованная фильтрация и т. д.). Во-вторых, анализ осуществляется мгновенно и, следовательно, удобен для использования. Еверетт и др. [1.37] разработали устройство для прямой записи биомедицинских данных па фотопленку в виде, совместимом с многоканальной оптической обработкой.

В другом методе когерентной оптической обработки сигналов, обрабатываемые сигналы не записываются оптимальным образом специально для оптической обработки, а регистрируются с экрана осциллографа или на ленте самописца. При определенных довольно обычных условиях требуемый спектр мощности таких сигналов можно получить как одно измерение Фурье-преобразования двумерной записи входного сигнала [1.38].

Преимуществом любого из этих оптических методов обработки сигналов по отношению к уже достаточно простому методу преобразования аналогового сигнала в цифровую форму и последующего выполнения быстрого преобразования Фурье на ЭВМ должна остаться скорость обработки (отображение результатов вычисления можно получить в реальном времени, если данные вводятся непрерывно с помощью соответствующего входного устройства, способного работать в когерентном свете [1.36]).



Информация о работе «Анализ и моделирование методов когерентной оптики в медицине и биологии»
Раздел: Физика
Количество знаков с пробелами: 105404
Количество таблиц: 0
Количество изображений: 19

Похожие работы

Скачать
93910
0
2

... матрице, имеющей частично историческую и социокультурную обус­ловленность. ГЛАВА 3 Логика и математика как связующее звено между философией и наукой   Философский стиль мышления современного естествоиспытателя может быть представлен на основе идей Дж. Смарта и В. Куайна [1] в виде сферы взаимодействия классических и современных философских идей и теоретического естествознания в ...

Скачать
766403
1
0

... философии - особенно с методо­логических позиций материалистического понимания исто­рии и материалистической диалектики с учетом социокультурной обусловленности этого процесса. Однако в западной философии и методологии науки XX в. фактически - особенно в годы «триумфального шествия» ло­гического позитивизма (а у него действительно были немалые успехи) - научное знание исследовалось без учета его ...

Скачать
117222
0
10

... , то необходимость в дополнительной линии передачи вообще отпадает при передаче энергии на сотни километров, поскольку вся излучаемая энергия может быть перехвачена приемным устройством с апертурой приемлемых размеров. В диапазоне субмиллиметровых волн отношение допустимых размеров апертур к длине волны заметно уменьшается, тем не менее в ряде случаев подобные квазиоптические линии передачи могут ...

Скачать
28619
0
0

... школа, 1988. 10.  Артюхов В.Г., Ковалева Т.А., Шмелев В.П. Биофизика. Воронеж: Воронежский гос. ун-т 1994. 11.  Антонов В.Ф. Биофизика. VI.: Арктос-Викапресс, 2000. 12.  Дополнительная 13.  Механика и биомеханика 14.  Никитин E. VI. Теоретическая механика. VI.: Наука. 1968. Александер Р. Биомеханика. VI.: Мир. 1970. 15.  Журавлева А.И., Iраевская И.Д. Спортивная медицина и лечебная ...

0 комментариев


Наверх