1.2 Розробка СІФК

Для регулювання вихідної напруги випрямляча застосуємо фазо-імпульсний метод. При цьому до складу перетворюючого пристроя не вводять додаткових силових вузлів, а лише у якості вентелів випрямної схеми використовують керовані ключі – як правило, тиристори. Принцип дії регулятора полягає у тому, що за допомогою спеціальної схеми керування забезпечується регульована затримка на вмикання тиристорів відносно переходу через нуль змінної синусоїдальної напруги. Тобто фаза послідовності імпульсів керування змінюється щодо фази синусоїдної напруги.

Перевагою імпульсних методів керування є те, що, перш за все, надлишок енергії тут просто не береться від джерела живлення (а не гаситься на баластному елементі, як, наприклад, у компенсаційному стабілізаторі). Це в ідеалі (якщо вважати елементи регулятора такими, що не мають, наприклад, опору) за принципом побудови регулятора обумовлює величину ККД у 100 відсотках.

Завданням СІФК є генерація імпульсів керування необхідної амплітуди, тривалості і форми, розподіл їх по відповідних вентилях і визначення моменту подачі цих імпульсів відносно переходу змінної напруги через нуль.

СІФК повинна відповідати наступним вимогам:

1)  забезпечувати достатню для вмикання тиристорів амплітуду напруги і струму імпульсів керування – (10...20) В, (20...2000) мА;

2)  забезпечувати високу крутизну фронтів імпульсів – (150...200) В/ел. градус;

3)  забезпечувати регулювання величини кута α у загальному діапазоні з необхідною точністю;

4)  забезпечувати симетрію імпульсів керування по фазах випрямляча;

5)  забезпечувати достатню для надійного вмикання тиристорів тривалість імпульсів керування – взагалі їх тривалість може складати (π-α), але це не економічно-достатньо, щоб вона була такою, коли струм через тиристор за час дії імпульсу перевищує величину струму утримання;

6)  мати високу завадостійкість.

1.2.1 Розрахунок вихідного каскаду

Для забезпечення захисту тиристора від зворотної напруги на керуючому електроді, паралельно керуючому електроду ставимо діод КД212Г, що забезпечує проходження струму не меншого, ніж струм керуючого електроду 0,3А. Він має параметри:

Iпр.max=1А;Uпр.=1,2В; Uзв.max=100В; Iзв.max=0,1мА.

Оскільки напруга керуючого електроду тиристора і напруга захисного діода VD3 різні, введемо в схему обмежуючий резистор послідовно з вторинною обмоткою трансформатора вихідного каскаду, що дозволить вирівняти напругу на виході трансформатора. Задамо, щоб падіння напруги на обмежуючому резисторі дорівнювало двом третім напруги керування,де Umир.=3 В при струмі керуючого електроду Іm=0,3 А. Тоді вихідна напруга трансформатора становитиме


Um = Umир.· 5/3=3·5/3=5В

Опір обмежуючого резистора

Rобм = (Um – Umир.) /Im = (5-3)/0,3=6,66 Ом

Із номінального ряду опорів вибираємо 6,8 Ом. Для забезпечення формування короткого імпульсу виберемо транзисторний насичений ключ з трансформаторним виходом (рис.5).

Задаємось напругою живлення каскаду Еk = 25В.

Для забезпечення якомога, більшого коефіцієнта підсилення, частотного діапазону для формування переднього фронту імпульсу, а також допустимих напруги та струму на навантаженні попередньо виберемо транзистор КТ972А з параметрами:

Ukе доп. > 2∙ Ek

Іk доп. = 4 А; Ukе доп. = 65 В; Ів mах = 0,5 А;fа = 20МГц;

rв= 3 Ом; rе = 0,08 Ом; rk=730 кОм; = 750; Ukе п. = 1,5 В.

Рис.5. Транзисторний насичений ключ з трансформаторним виходом


Звідси коефіцієнт підсилення:

=/(+ 1) = 750/(750 + 1) = 0,9986.

n = Umk = 5/25 0,2.

Колекторний струм насичення

Ik нас. = Іm∙ n = 0,3∙ 0,2 = 0,06 А.

Максимальні струми та напруги в схемі виберемо з коефіцієнтом запасу Кzi=0,8.

Звідси Іk mах = К∙ Ik доп.= 0,8∙ 4 = 3,2 А

Опір навантаження, перерахований до первинної обмотки трансформатора при дії напруги додатньої полярності

Rн = Umm∙ n2 = 5/(0,3∙ 0,2 2) = 416,66 Ом.

Індуктивність намагнічування трансформатора вибираємо такою, щоб максимальний колекторний струм Ik mах в імпульсі не перевищував допустимого значення:

Lmin=(Ek/(Ik max-(Ek/Rн))) ∙ t

Lmin=(25/(3,2-(25/416,66))) ∙4∙10-6 = 3,185 ∙10-5 Гн

Для конструктивного розрахунку вибираємо значення індуктивності 33мкГн. Знаходимо максимальний струм намагнічування


jmax=(Ek/L) ∙t= (25/0,000033) ∙4∙ 10-6 = 3,03 A

Звідси максимальний струм I mn з урахуванням колекторного струму насичення

Іmn =jmахk нас = 3,03 +0,06 =3,09 А.

Струм бази насичення Іб нас. = Іmn / = 3,09 / 750 = 4,12 мА.

Відповідна напруга насичення Uбе н становить 0,9 В.

Величину допустимого викиду напруги знаходимо з урахуванням коефіцієнта завантаження за напругою К.

Umd=Ukemax – Ek= Kzu∙ Uke доп- Ek = 0,8∙65- 25 =27 В.

Знаходимо еквівалентне значення шунтуючого резистора

екв=Umd/0,74∙ jmах = 27/ 0,74 ∙3,03 =12,04 Ом.

Враховуючи, що при закриванні транзистора, напруга на вторинній обмотці трансформатора має зворотню полярність, то навантаження в цей момент шунтується діодом. Задаючись напругою на відкритому діоді Ud=1,2B, знаходимо при цьому струм вторинної обмотки трансформатора, який рівняється також струму діода:

Im = (Um -Ud)/R = (5- 1,2)/6,8 = 0,558 А.

Перевіряємо умову неперевершення знайденого струму максимального струму діода. Умова виконується.

Знаходимо перерахований опір до первинної обмотки трансформатора:


Rнп=Um/Im∙n2 = 5/0,558 ∙ 0,2 2 = 224 Ом.

Реальне значення шунта, що підключається до первинної обмотки трансформатора становить:

Rш =Rнп ∙Rш екв/( Rн п – Rш екв )=224 ∙ 12,04 /(224-12,04) =12,72 Ом

Вибираємо значення опору 13 Ом.

Діод, що забезпечує струм jmax, зворотню напругу Еk, вибираємо КД202Г (Iпр.max=3,5 А, Uзв.max=100 В).

Знаходимо тривалість викиду t0 = 3 ∙L /Rш екв=3 ∙0,000033/12,04 = 8,22 мкс.

Знайдене значення тривалості t0 менше тривалості половини періода частоти мережі живлення 0,01 с.

Вибираючи коефіцієнт насичення транзистора S=1,5, знаходимо необхідний струм бази Іб і значення обмежуючого резистора Rобм в цьому ланцюзі, задаючись значенням вхідної напруги керування ключем Uвх=10 В.

Іб= S ∙Іб нас = 1,5∙0,00412= 6,18 мА.

R обм = (Uвх – Uбен ) /Іб = (10 – 0,9) /0,00618= 1,472 кОм.

Вибираємо стандартне значення з номінального ряду Rобм = 1,5 кОм. Паразитна ємність та індуктивність для вказаних значень індуктивності становить

Cо = 0,03∙ 10-9 Ф, Lc=0,01∙L =0,000033∙0,01=0,33 мкГн

Для обчислення фронту імпульсу знайдемо вихідний опір транзистора і постійну часу даної схеми :


Rекв=rk∙ (1-)+re∙(1+)

Rекв=730000 ∙ (1 - 0,9986) + 0,08∙ (1 + (0,9986∙730000 – 0,08) / (0,08 + 3 +1500)) = 1,06 кОм.

t=1/(2∙3,14∙20∙106)+30∙10-12∙416,66 +0,33∙10-6/1,06∙ 103=2∙10-8с

Звідси тривалість фронту імпульсу

tф=t∙ (1+b) ∙ ln(1+1/(S-1))=16,5 мкс.

еквівалентна потужність на транзисторі становить:

Рекв= Uken ∙ (j max/2 +Ik нас.)/2 = 1,5 ∙ (3,03/2 + 0,06)/2=1,18 Вт

Обчислена потужність не перевищує максимальну Ркmax=8 Вт.


Информация о работе «Проектування і розрахунок керованих випрямлячів електричного струму»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 26000
Количество таблиц: 3
Количество изображений: 7

Похожие работы

Скачать
18205
0
25

... . 1 РОЗРАХУНОК СХЕМИ КЕРОВАНОГО ВИПРЯМЛЯЧА 1.1 Вибір схеми і розрахунок основних параметрів випрямляча. Відповідно до завдання приймаємо схему випрямляча з нульовим виводом Рисунок 1.1 — Керований випрямляч з нульовим виводом На початку розрахунок проводимо в некерованому режимі, тобто при . Оскільки напруга мережі може коливатися в межах визначимо величини випрямленої напруги на ...

Скачать
46659
2
21

... трудомістка і складна справа. Тому частіше всього для оцінки нагрівання двигуна використовують непрямі методи, зокрема, метод еквівалентних величин і метод середніх втрат. Оскільки електропривод візка мостового крана працює у повторно-короткочасному режимі, то для перевірки його на нагрівання необхідно побудувати навантажувальну діаграму двигуна на підставі рівняння /23/, в яке входить момент і ...

Скачать
312140
1
113

... 4.                 Як графічно позначаються польові транзистори? Інструкційна картка №9 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки» І. Тема: 2 Електронні прилади 2.4 Електровакуумні та іонні прилади Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумово ...

Скачать
67354
14
10

... інверторів живлення, по відношенню до лінійних, є їхньою експлутаційною перевагою. Менші витрати матеріалів ведуть до ресурсозберігання. В даний час на світовий ринок поставляються інверторні джерела живлення різних потужностей призначені як для окремих вживань, так і універсальні. Одночасно зросла кількість фірм, що виготовляють імпульсні джерела живлення. Проведений аналіз публікацій та ринку ...

0 комментариев


Наверх