5.3.2 Ликвидация ила

1.Захоронение в почве. В странах ЕЭС ежегодно производится около 6 Мт ила, причём до 30% применяется в качестве удобрения в сельском хозяйстве. Такое использование ила весьма выгодно как с точки зрения роста урожайности, так и в плане улучшения почвы. Сброженный ил, обычно в виде пульпы, содержит азота 5,1; фосфора 1,6 и калия 0,4%. Доступность этого азота для сельскохозяйственных культур составляет 50-85%, а фосфора 20-100%. Таким образом, жидкий сброженный ил по содержанию этих элементов не уступает навозу.

Этот способ ликвидации осложняется двумя обстоятельствами: присутствием в иле патогенных организмов и токсичных элементов. Распространение патогенных организмов может быть пресечено рядом мер по дезинфекции ила перед его внесением в почву.

Принято считать, что основной повод для беспокойства дают два патогенных организма: Salmonella spp. и бычий цепень. Однако в иле могут присутствовать и другие патогенные виды, в частности паразитические, например Brucella abortus и Ascaris suum. Борьба с болезнями основывается на стабилизации ила.

Основными стабилизирующими ил процессами являются сбраживание, складывание в кучи или обработка известью. В качестве альтернативы возможно захоронение ила ниже уровня почвы.

2. Захоронение в море.

3.Сжигание.


6 Биодеградация твёрдых отходов

Перед транспортировкой твёрдых отходов на свалку они могут быть подвергнуты обработке, т.е. измельчению, перемалыванию и дроблению. Эта предварительная обработка может сильно влиять на катаболические процессы в твёрдых отходах. На типичной свалке, где отходы размещаются по отсекам, вся система в целом работает как группа реакторов периодического действия, в которых отходы находятся на разных стадиях биодеградации и подвергаются случайным воздействиям, например, попаданию воды, содержащей растворённый кислород или различные ксенобиотики. В этом случае можно применить простую модель периодических культивирований, действующих в той последовательности, в какой происходит загрузка. Для более традиционного типа свалки можно использовать модель периодического культивирования с повторным внесением посевного материала микроорганизмов и беспозвоночных.

В начальной стадии катаболизма твёрдых отходов, сопровождаемого физическими и химическими процессами, преобладают аэробные процессы, в ходе которых наиболее лабильные молекулы быстро разрушаются рядом беспозвоночных и микроорганизмами. Утилизация миксотрофных субстратов затем сменяется последующим катаболизмом макромолекул, таких как лигноцеллюлозы, лигнин, танины и меланины, которые способны только к медленной биодеградации, что приводит к тому, что кислород перестаёт быть лимитирующим субстратом.

6.1 Биодеградация ксенобиотиков в окружающей среде

Биодеградация органических соединений, загрязняющих окружающую среду, оправдана только в том случае, если в результате происходит их полная минерализация, разрушение и детоксикация; если же биохимическая модификация этих соединений приводит к повышению их токсичности или увеличивает время нахождения в среде, она становится не только нецелесообразной, но даже вредной. Детоксикация загрязняющих среду веществ может быть достигнута путем всего одной модификации структуры. Судьба ксенобиотика зависит от ряда сложным образом взаимосвязанных факторов как внутреннего характера (устойчивость ксенобиотика к различным воздействиям, растворимость его в воде, размер и заряд молекулы, летучесть), так и внешнего (рН, фотоокисление, выветривание). Все эти факторы будут определять скорость и глубину его превращения. Скорость биодеградации ксенобиотика данным сообществом микроорганизмов зависит от его способности проникать в клетки, а также от структурного сходства этого синтетического продукта и природного соединения, которое подвергается естественной биодеградации. В удалении ксенобиотиков из окружающей среды важную роль играют различные механизмы метаболизма.

В большинстве случаев при исследовании биодеградации использовался традиционный подход, основанный на выделении и анализе свойств чистых изолятов из окружающей среды. С другой стороны, из-за гетерогенности среды в ней формируются местообитания для множества разных микроорганизмов с самыми разнообразными метаболическими свойствами. Эти местообитания не могут не быть взаимосвязанными друг с другом. Ксенобиотики подвергаются действию смешанных популяций микроорганизмов, т.е. сообществ, для которых характерны отношения кооперации, комменсализма и взаимопомощи.

6.2 Биодеградация нефтяных загрязнений

Рассмотрим процессы биодеградации сложных смесей углеводородов и их производных в средах, загрязненных нефтью. Речь пойдет как о сточных водах нефтяной промышленности, так и о загрязнении нефтью окружающей среды. Источники таких загрязнений могут быть самые разнообразные: промывка корабельных бункеров для горючего, аварии на танкерах в открытом море (основная причина нефтяных загрязнений окружающей среды), утечки в нефтехранилищах и сброс отработанных нефтепродуктов.

Сточные воды нефтяной промышленности обычно очищают биологическим способом после удаления большей части нефти физическими способами или с помощью коагулянтов. Токсическое воздействие компонентов таких сточных вод на системы активного ила можно свести к минимуму путем постепенной «акклиматизации» очистной системы к повышенной скорости поступления стоков и последующего поддержания скорости потока и его состава на одном уровне. Однако загрузка этих систем может значительно варьировать и, видимо, лучше использовать более совершенные технологии, например системы с илом, аэрированным чистым кислородом, или же колонные биореакторы.

Самые большие утечки нефти в окружающую среду происходят в море, где она затем подвергается различным физическим превращениям, известным как выветривание. В ходе этих абиотических процессов, включающих растворение, испарение и фотоокисление, разлагается ( в зависимости от качества нефти и от метеорологических условий) 25 - 40% нефти. На этой стадии разрушаются многие низкомолекулярные алканы. Степень микробиологической деградации выветрившихся нефтяных разливов определяется рядом факторов. Весьма важен состав нефти: относительное содержание насыщенных, ароматических, содержащих азот, серу и кислород соединений, а также асфальтенов в различных типах нефти различно. Определенную устойчивость нефти придают разветвленные алканы, серосодержащие ароматические соединения и асфальтены. Кроме того, скорость роста бактерий, а, следовательно, и скорость биодеградации определяются доступностью питательных веществ, в частности азота и фосфора. Оказалось, что добавление таких веществ увеличивает скорость биодеградации. Количество разных организмов, способных расти на компонентах нефти, зависит от степени загрязненности углеводородами. Например, больше всего их находят поблизости от крупных портов или нефтяных платформ, где среда постоянно загрязнена нефтью. Полная деградация нефти зачастую не происходит даже при участии богатых по видовому составу микробных сообществ. Наиболее биологически инертные компоненты, например асфальтены, содержатся в осадочных породах и нефтяных залежах. Основные физические факторы, влияющие на скорость разложения нефти, - это температура, концентрация кислорода, гидростатическое давление и степень дисперсности нефти. Наиболее эффективная биодеградация осуществляется тогда, когда нефть эмульгирована в воде.

Особую проблему представляют выбросы или случайные разливы нефти на поверхности почвы, поскольку они могут привести к загрязнению почвенных вод и источников питьевой воды. В почве содержится очень много микроорганизмов, способных разрушать углеводороды. Однако даже их активность не всегда достаточна, если образуются растворимые производные или поверхностно-активные соединения, увеличивающие распространение остаточной нефти.


Информация о работе «Биотехнология и переработка отходов производства»
Раздел: Экология
Количество знаков с пробелами: 70197
Количество таблиц: 2
Количество изображений: 1

Похожие работы

Скачать
13837
0
0

... . За счет их деятельности расщепляется целлюлоза, синтезируются жирные кислоты. Далее – бактерии, образующие водород и уксусную кислоту. И, наконец, водородотрофные метанообразующие бактерии. Аэробная переработка отходов в сельском хозяйстве Применение в животноводстве интенсивных технологий привело к образованию большого количества разнообразных отходов, для использования которых может не ...

Скачать
68643
2
6

... в 1976 году (с некоторыми перерывами) можно сделать следующие выводы и дать практические рекомендации. 1.            Экологическая биотехнология переработки фракции ТБО (пищевые отходы, отходы древесины, целлюлозное волокно в виде бумаги и картона), а также часть ТПО, состоящая из древесных отходов, целлюлозно-бумажных и картонных отходов заключается в строжайшем соблюдении всех нижеприводимых ...

Скачать
18571
0
0

... системах всех уровней, причем в самых разнообразных отраслях науки, промышленного производства, медицины, но в решении, так называемых птицеводческих экологических проблем, биотехнология пока не заняла первое место. При переработке органических отходов все еще используют технологии, включающие физические методы воздействия на сырье, высокотемпературные режимы с использованием большого количества ...

Скачать
23359
0
9

... , минуя стадию обогащения (бучения и отбелки ЦТО), которую здесь можно исключить. Na-КМЦ, как наиболее интересный и реальный ценнейший товарный продукт с очень широким ассортиментом применения можно получать практически из всех видов целлюлозно-бумажных и картонных отходов. Для этого не надо проводить очистку ЦТО и обогащение с целью получения более чистой технической целлюлозы, а вполне можно ...

0 комментариев


Наверх