160 г 160 г.

Чтобы такая реакция произошла, суммарная концентрация MgO SiO2 в водном растворе, который удаляется из системы, не должна превышать некоторого предельного объема. Поэтому большое количество воды останется свободным. Так, если 700 г. оливина будет превращено в серпентин в результате химического воздействия равного веса воды, то 72 г. воды должны остаться в серпентините, а остающиеся 628 г. должны вынести из системы 160 г. MgO и 60 г. SiO2. Кроме того, если из ультрамафической породы при температурах 200 или 300ºС будут непрерывно удаляться растворы, настолько обогащенные оксидами магния и кремния, то должен произойти магнезиальный метасоматоз окружающих пород. Подобные явления отмечаются редко, хотя известны многочисленные примеры региональной силификации в серпентинитовых поясах. Таким образом, неизбежно напрашивается вывод, что серпентинизация перидотитов путем равнообъемного замещения требует больших количеств свободной воды. Хесс, выдвинувший гипотезу «серпентинитовой магмы», избежал этого затруднения. Он предположил, что в начале происходит предварительная кристаллизация оливина, а затем уже последующая реакция между оливином и почти равным объемом остаточного водного кремнекислого раствора с образованием серпентинита:

3Mg2SiO4 + H4SiO4 + 2H2O → 2H4Mg3Si2O9

оливин 61 см3 ± 36 см3 ± серпентин

131 см3 220 см3.

Однако, как уже отмечалось, гипотеза Хесса должна быть отвергнута как несовместимая с имеющимися экспериментальными данными.

Учитывая все вышеизложенное о процессе серпентинизации, а также различные представления о природе и происхождении перидотитовой магмы, правомерно существование двух альтернативных гипотез.

1. Перидотитовые магмы представляют собой водные магнезиальные расплавы, возможно приближающиеся по составу к серпентиниту. Серпентинизация является либо позднемагматическим, либо вторичным (автометасоматическим) процессом – реакцией между еще нагретым оливином и водными расплавами или растворами, образовавшимися из кристаллизующейся магмы. Этой точки зрения придерживались Лодочников, Хесс и др. Однако она выглядит совершенно несостоятельной в свете экспериментальных данных, полученных Боуэном и Таттлом.

2. Перидотитовые «магмы» состоят в основном из оливиновых и пироксеновых кристаллов, промежутки между которыми заполнены магматической жидкостью или парами воды. Серпентинизация почти соответствует равнообъемному замещению и происходит, по-видимому, при температурах от 200 до 400ºС. Необходимая для этой реакции вода, вместе с растворенными в ней SiO2 и СО2, может быть получена из различных источников:

А. В случае слабой серпентинизации небольшое количество участвующей в реакции воды может иметь магматическое происхождение и серпентинизация может представлять собой автометасоматический процесс. На этом способе образования особенно настаивал Бенсон, и он широко поддерживался многими авторами как хорошо объясняющий серпентинизацию. Однако Боуэн и Таттл показали, что автометасоматоз перидотитов должен скорее вызвать сложную серию замещений, как-то: превращение энстатита в тальк при высокой температуре и изменение оливина в серпентин и брусит при температурах ниже 400ºС. То, что и оливин и энстатит очень широко замещаются серпентином (при этом энстатит более устойчив), свидетельствует о том, что автометасоматоз встречается гораздо реже, чем это представлялось до сих пор. Там, где тальк образует псевдоморфозы по энстатиту, автометасоматоз более вероятен.

Б. Серпентинизация, в некоторых случаях, может быть обусловлена действием внешней посторонней магматической воды, поступившей, например, из близрасположенных интрузивных гранитов. Однако известны многочисленные случаи (например, серпентиниты Калифорнии и крупные тела перидотитовых серпентинитов юга Новой Зеландии), когда граниты, более молодые, чем ультрамафические интрузии, не были источником магматической воды.

В. Главная масса большого количества воды (и растворенных СО2, SiO2 и др.), необходимого для полной серпентинизации крупных ультрамафических тел, могла быть получена из окружающих, насыщенных водой геосинклинальных осадков или из газов и растворов, двигающихся в стороны и кверху от сходных пород, испытывающих на глубине, ниже ультрамафических тел, уплотнение, цементацию и метаморфизм, либо даже из двигающегося кверху потока ювенильной воды, не связанного ни с каким магматическим источником. Ультрамафические интрузии, медленно внедряющиеся вдоль зон главных дислокаций в геосинклинальных толщах, должны быть легко доступны для таких растворов, двигающихся кверху вдоль тех же ослабленных зон. Растворы сходного происхождения могут играть значительную роль при превращении базальтовых пород в спилиты при натриевом метасоматозе, а также при образовании глаукофановых сланцев. Возможно, в этой связи важно учесть относительно высокое содержание хлора и бора в некоторых серпентинитах, а также отмечаемую способность турмалина, аксинита и других борсодержащих минералов образовывать обогащенные участки в серпентинитовых породах. Хлор и бор присутствуют в малых количествах в несерпентинизированных перидотитах, но их довольно много в морской воде.

В настоящее время в качестве рабочей гипотезы можно принять двойственную концепцию внедрения перидотитовой «магмы» в значительной степени в кристаллическом состоянии с одновременной или последующей серпентинизацией слагающих ее минералов (оливина и энстатита) в результате воздействия водных растворов или паров, происходящих или из окружающих геосинклинальных осадков или из интрузивных тел кислой магмы. Однако эта гипотеза, подобно любой другой гипотезе, может быть подвергнута различным изменениям и уточнениям и даже может быть совсем отброшена, если она окажется несовместимой с фактами, еще не известными в настоящее время.

Экспериментальные данные Б. Майсена и А. Бёттчера (1979) свидетельствуют о значительно более низких температурах образования ультраосновных водонасыщенных расплавов, чем это предполагалось ранее. Эти температуры (около 1300ºС) при высоком геотермическом градиенте и высоких содержаниях H2O в слабо дифференцированной мантии на ранних стадиях развития Земли были вполне достижимы при генерации ультраосновных магм, служивших источниками коматитовых лав (некоторые коматиты содержат 10 вес. % воды). При добавлении CO2 в систему перидотит-вода происходит снижение температуры плавления. В интервале давлений 15–30 кбар смещение составляет около 20ºС.

Вероятно, различное положение границ плавления перидотита в зависимости от состава флюида, а также химизма исходного вещества может объяснить различную глубину положения зоны зарождения мантийных расплавов. Кроме того, было установлено, что граница появления граната, в значительной степени зависящая от состава перидотитов, растянута на значительный интервал (примерно 10 кбар). Это позволяет предполагать горизонтальную минералогическую неоднородность и различия плотности в мантии.

Однородность составов образующихся в глубинных условиях магм или их вариации, а также последовательность, в которой они внедряются, определяются рядом физико-химических и геологических ограничений. Эти ограничения, прежде всего, связаны с составом эвтектических точек, геометрией кривых фазовых равновесий, с проявлением ликвационных процессов, со временем взаимодействия магм с породами верхних горизонтов земной коры. Согласно данным Х. Йодера (1978), существует регламентация однородности и последовательности изменений состава магматических расплавов, обусловленная способом образования магм. Им предложено две модели образования магм: по типу горячей пластины и вследствие диапирического процесса.

В первой модели тепловой источник располагается непосредственно ниже «необедненного базальтовой составляющей перидотита с ассоциацией оливин-ромбическтй пироксен-моноклинный пироксен-гранат при первоначальной температуре 1100ºС, соответствующей континентальной геотерме. Силл или диапир кристаллического перидотита, лишенного базальтовой составной части на глубине 130 км (давление около 40 кбар), имеет в верхней части температуру 1800ºС и большие энергетические запасы (135 кал/ºС). В этой модели в перекрывающих пластину «необедненных» перидотитах образуется зона плавления при температуре начала плавления безводного гранатового перидотита 1500ºС. Как показывает изучение системы форстерит-диопсид-пироп, и плавление природных гранатовых перидотитов при давлении 35 кбар, все главные минеральные фазы устойчивы с расплавом при постоянной температуре или внутри небольшого температурного интервала до тех пор, пока не будет достигнуто образование 30% расплава на верхней кромке плавления. Количество жидкости будет возрастать. За 1000 лет возможно создание зоны плавления 100 м, в течение 10000 лет эта зона достигнет 300, а в течение 25000 лет – 500 м. В зоне плавления будет существовать температурный градиент, и вследствие этого состав расплава в верхней зоне определяется постоянными условиями, а внутри зоны он обусловлен наивысшими постоянными температурами. Таким образом, создаются значительный объем расплава и его гетерогенность по вертикали зоны плавления.

Вторая модель плавления определяется диапирическим процессом внедрения «необедненного» гранатового перидотита в «обедненный» перидотит к глубинам, где достигается температура кристаллизации и происходит выплавление расплава из «необедненного» гранатового перидотита. Если предположить, что первоначальный диапир располагался на океанической геотерме на глубине 210 км, то при его перемещении до уровня 130 км под влиянием внутренней теплоты начнется плавление. Количество создаваемого расплава прямо зависист от поднятия диапира и потерь тепла горячим перидотитом. Плавление охватывает около 30% массы пород, и диапир будет подниматься на 35 км в течение интервала плавления при отсутствии кондуктивной потери тепла. Разница температур между частично расплавленным диапиром и его окружением составляет на этой стадии около 375ºС. В случае потери тепла во вмещающие образования, пропорционально снижается и количество расплава. Концентрация главных компонентов в жидкости будет примерно одинаковой во всем интервале плавления. Высокая степень плавления приурочена к верхней части зоны плавления и уменьшается по направлению к дну магматической камеры. При быстром подъеме диапира (10 см в год) полное плавление наступает через 350000 лет. При подъеме со скоростью 1 см/год пройдет минимум 3,5 млн. лет для получения 30% плавления. Обе модели имеют обратную последовательность составов расплавов по отношению к глубине зоны плавления.

При рассмотрении моделей образования магмы нельзя не затронуть вопрос о минимальном и максимальном количестве расплава, отделяющегося от первичного мантийного источника. Считается, что при образовании щелочных базальтов, обогащенных редкими элементами, степень плавления составляет менее чем 5%, тогда как при образовании ультраосновных расплавов она превышает 60%. На основании экспериментальных работ по плавлению природных перидотитов (Арндт, 1977) выведена зависимость степени отделения жидкости от ее источника от различной степени плавления. Для ультраосновных составов было установлено, что лишь по достижении степени плавления около 40% образующаяся жидкость может отделяться от кристаллических фаз. Гомогенизация и отделение жидкости обусловлены осаждением минеральных зерен через жидкость. Плавления 30–40% вещества недостаточно, для того, чтобы генерировать ультраосновные магмы одним актом плавления, поскольку 40% жидкости, образующейся при плавлении и еще не достигшей коматитового состава, стремится удалиться из источника. Следовательно, для образования ультраосновной магмы необходимо предполагать вторую или третью стадию плавления одного и того же вещества, формирование расплава и тугоплавкого оливинового остатка. Это заключение подтверждается не только экспериментами, но и резким обеднением легкими редкоземельными элементами перидотитовых коматитов.

Эксперименты по плавлению шпинелевого лерцолита в щелочном базальте показали, что критический уровень удаления жидкости превышает 5% и что этот уровень зависит от размера зерен и вязкости расплава. Следовательно, такие магмы, как щелочные базальты, которые имеют высокую концентрацию несовместимых малых элементов и для которых предполагается очень низкая степень плавления, не в состоянии отделяться от своего источника под влиянием плавучести. Для отделения таких магм требуется дополнительное напряжение, создающее расширяющуюся зону, в которую будет втекать расплав, используя сетку межгранулярных пленок.

Наблюдаемое в океанических толеитах различное содержание редких элементов, можно объяснить этапностью формирования магм сходного состава. На первом этапе после достижения критического уровня удаления жидкости создается базальтовый расплав, обогащенный легкими редкоземельными элементами. Магмы, обедненные легкими редкоземельными элементами, образуются после удаления порции базальтов раннего этапа, вместе с которыми удалены несовместимые легкие элементы.

Такой механизм двухэтапного плавления одного источника можно предполагать и для образования коматитовых магм. Если эта модель соответствует действительности, то состав коматитов, как бы он ни был близок к химизму предполпгаемого мантийного субстрата, мало свидетельствует о действительном составе мантийного источника. Содержания главных и редких элементов в коматитах отражают химизм остатка после экстракции магмы первого этапа, но не исходной мантии.

Различия в составах коматитов, в частности с высоким и низким отношением CaO/Al2O3, могут свидетельствовать об отделении магмы определенного состава на раннем этапе плавления. Например, коматиты нагорья Барбертон (ЮАР) имеют высокое отношение CaO/Al2O3, тогда как в относительно бедных оксидом магния коматитах Мунро из провинции Онтарио (Канада) это отношение около 1. Предположим, что магма первого этапа плавления формировалась при давлении около 35 кбар в равновесии с оливином, моноклинным пироксеном, ромбическим пироксеном при преимущественном вхождении граната в расплав. Это должно привести к обогащению магмы Al2O3 относительно CaО и среднему уровню содержания легких редкоземельных элементов. Дальнейшее плавление этого источника даст расплав, сходный по составу с коматитами провинции Барбертон (с высоким значением CaO/Al2O3 и ровным профилем редкоземельных элементов).

Другой варитант плавления может произойти, если первая магма формируется в равновесии с оливином, пироксенами и гранатом. В этом случае при 20-и процентном плавлении, когда почти весь моноклинный пироксен плавится, состав расплава должен быть менее основным. При дальнейшем подъеме диапира и его плавлении гранат как устойчивая и плотная фаза может оседать в жидкости, последняя будет иметь низкое содержание СаО и обеднена легкими редкоземельными элементами.


Информация о работе «Магма и магмоообразование»
Раздел: Геология
Количество знаков с пробелами: 114512
Количество таблиц: 0
Количество изображений: 0

0 комментариев


Наверх