Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Институт медицины, экологии и физической культуры

Экологический факультет

Кафедра биоэкологии и генетики человека

КУРСОВАЯ РАБОТА

"МИКОРИЗА"

Студентка Левщанова Юлия Сергеевна,

1 курс, специальность биоэкология

Научный руководитель, д.б.н.,

профессор И.В. Благовещенский

Ульяновск, 2008


СОДЕРЖАНИЕ

Введение

1. Микориза

2. Генно-инженерные эксперименты арбускулярной микоризы

3. Грибы-симбионты

4. Типы микоризы

5. Биологическая сущность микоризы

Заключение

Список использованных источников


Введение

Симбиоз корней растения с грибами сложился исторически. Отпечатки грибных нитей ученые обнаружили у ископаемых растений, давно вымерших на земном шаре (например, у псилофитов). Остатки древней растительности, еще сохранившиеся в современной флоре (плауны или виды Psilotum) , требуют наличие микоризы. Голосеменные растения, куда входят наши хвойные породы, саговники, гинкго, представленные древесным типом, являются микоризными растениями. Много древесных покрытосеменных (цветковых) также сожительствуют с почвенными грибами. Это сожительство развилось, по-видимому, на торфянистых и перегнойных почвах, столь характерных для древней растительности. Азот этих почв мог стать доступным корням высших растений в значительной мере благодаря грибам, которые, пронизывая частицы этих почв, производят разложение перегнойных веществ и переводят содержащийся в них азот в доступные формы (аммонийные). В клетках коры корней, несущих внутреннюю микоризу, находят много сахарозы, которая не только усваивается грибом, но и откладывается им в запас. Эти же клетки коры оказываются богатыми фосфором и калием ( Катенин, 1972).


1. Микориза

Микориза - симбиотическое обитание грибов на корнях и в тканях корней высших растений. В микоризе гриб получает от корней углеводы и снабжает растение водой и минеральными элементами питания (рис. 1.).

Микориза (Mycorhiza) - термин, предложенный Франком, для обозначения корней, тесно сросшихся с грибом в один орган - грибо-корень (muchu -гриб, riza - корень). Такие корни встречаются у многих наших деревьев у дуба, бука, граба, орешника, ив, тополей, многих хвойных и др. Молодые корни этих растений сплошь оплетаются тоненькими гифами гриба; по мере нарастания корня нарастает и окутывающий его грибной чехол (Катенин, 1972).

Рис.1. Микориза (Катенин, 1972)

2. Генно-инженерные эксперименты арбускулярной микоризы

Эволюционный успех наземных растений во многом был обеспечен симбиозом с почвенными грибами и бактериями, которые снабжают растение соединениями азота и фосфора, получая взамен питательные вещества, образуемые растением входе фотосинтеза.

Самым древним вариантом такого симбиоза, по-видимому, является микориза, известная в двух основных вариантах: более простая эктомикориза (гриб не проникает внутрь растительных клеток) и эндомикориза, или арбускулярная микориза(АМ) (см. рис. 2.3), при которой гифы гриба врастают внутрь клеток корня. Судя по палеонтологическим данным, АМ существовала уже 450млн лет назад, в ордовикском периоде. О ее древности свидетельствует также ее широкое распространение во всех группах наземных растений. Симбиотические отношения с азотфиксирующими бактериями (к которым относятся ризобии и актинобактерии) тоже, скорее всего, имеют очень древнюю историю, однако в большинстве случаев речь идет о внеклеточных бактериальных симбионтах. Только некоторые покрытосеменные (цветковые) растения сравнительно недавно научились культивировать бактерии внутри клеток своих корней, в особых органах— клубеньках. Клубеньковые симбиозы бывают двух типов: 1)симбиоз бобовых с ризобиями (бактерии из группы альфапротеобактерий) (СБР), 2) актинориза (АР)— симбиоз с актинобактериями рода Frankia. Актинобактерии образуют мицелиальные структуры наподобие грибов; раньше их относили к грибам и называли актиномицетами. Клубеньковые симбиозы встречаются только в четырех группах (порядках) покрытосеменных: у бобовых (Fabales), розовых (Rosales), тыквенных (Cucurbitales) и буковых (Fagales), причем не у всех, а только участи представителей. Недавно на основе молекулярно-генетических данных было установлено, что эти четыре отряда представляют собой монофилетическую кладу, то есть группу, происходящую от единого общего предка. Было высказано предположение, что у общего предка этой группы произошли какие-то генетические изменения, обусловившие принципиальную возможность развития клубенькового симбиоза того или иного типа. Одни представители группы впоследствии воспользовались этой возможностью, другие нет. Симбиоз бобовых с ризобиями (СБР) изучен гораздо лучше, чем актинориза (АР). Удалось выявить связь между СБР и АМ: оказалось, что по меньшей мере семь генов задействованы в обоих симбиозах. Эти гены получили название "общих генов симбиоза" (common symbiosis genes). На этом основании было высказано предположение, что при становлении СБР была использована древняя генетическая программа, сложившаяся изначально для обслуживания внутриклеточного симбиоза с грибами(АМ). Однако какие именно изменения были внесены в эту программу, до сих пор оставалось не ясным.

И вот наконец британским и германским биологам удалось обнаружить одно существенное генетическое различие между "клубеньковыми" и "бесклубеньковыми" цветковыми растениями. Ученые проанализировали строение белков, кодируемых "общими генами симбиоза", у разных групп цветковых растений. Оказалось, что большинство этих белков имеют практически одинаковую ("консервативную") структуру у всех цветковых. И только один из них оказался вариабельным. Белок этот называется SYMRK (symbiosis receptor kinase). В чем именно состоит его функция, экспериментально не установлено, но многое можно сказать на основе анализа его доменной структуры (домен— функциональная часть или блок белковой молекулы, содержащий некий узнаваемый аминокислотный "мотив", по которому обычно можно судить о функции данного домена). У белка SMYRK есть, во-первых, трансмембранный домен, который, как видно из названия, располагается в толще клеточной мембраны. Внутриклеточная часть белка содержит домен протеин-киназы, функция которого состоит в переносе фосфата с АТФ на какой-нибудь белок (таким способом многие рецепторные белки передают полученный сигнал внутрь клетки, поскольку фосфорилирование белков оказывает радикальное влияние на их свойства— например, переводит их в активное состояние из неактивного). И трансмембранный домен, и домен протеин-киназы в этом белке примерно одинаковы у всех исследованных авторами видов цветковых растений. Основные различия сосредоточены во внеклеточной части белка, которая, несомненно, выполняет рецепторную функцию (улавливает какой-то химический сигнал). Исследователи выявили три основных варианта внеклеточной части белка SYMRK:

1)  "длинный вариант", характерный для растений, образующих клубеньки, а также ближайших их родственников;

2)  "средний вариант", характерный для более дальних двудольных родственников "клубеньковых" растений;

3)  "короткий вариант" характерный для однодольных (риса и кукурузы) .

Клубеньки любого типа (СБР или АР) встречаются только у обладателей "длинного" варианта гена SYMRK. Арбускулярная микориза (АМ) встречается у обладателей всех трех вариантов гена (рис. 2.1).

Структура гена SYMRK и типы внутриклеточного корневого симбиоза у цветковых растений. Слева — эволюционное древо цветковых. Серым прямоугольником обозначены четыре порядка, у представителей которых встречаются клубеньковые симбиозы (АР или СБР). В овальные рамки заключены родовые названия растений, у которых анализировалась структура гена. Черным цветом выделены растения, образующие АМ и АР, серым — АМ и СБР, белым — только АМ. Схематичные рисунки изображают три типа внутриклеточного симбиоза: AR = АР, RLS = СБР, AM = АМ. Три длинных горизонтальных прямоугольника отображают структуру гена SYMRK. Буквами обозначены домены: NEC, LRR — предполагаемые рецепторные (внеклеточные) домены; TM — трансмембранный домен; PK — протеин-киназный (внутриклеточный) домен. (Рис. из обсуждаемой статьи в PLoS Biology)

Рис. 2.1. Структура гена SYMRK и типы внутриклеточного корневого симбиоза у цветковых растений. Слева— эволюционное древо цветковых. Серым прямоугольником обозначены четыре порядка, у представителей которых встречаются клубеньковые симбиозы (АР или СБР). В овальные рамки заключены родовые названия растений, у которых анализировалась структура гена. цветом выделены растения, образующие АМ и АР, серым— АМ и СБР, белым— только АМ. Схематичные рисунки изображают три типа внутриклеточного симбиоза: AR=АР, RLS=СБР, AM=АМ. Три длинных горизонтальных прямоугольника отображают структуру гена SYMRK. Буквами обозначены домены: NEC, LRR— предполагаемые рецепторные (внеклеточные) домены; TM— трансмембранный домен; PK— протеин-киназный (внутриклеточный) домен. (Рис. из обсуждаемой статьи вPLoS Biology )

Обнаружив эту закономерность, авторы, естественно, предположили, что приобретение "длинного" варианта SYMRK и было тем самым ключевым событием, которое создало необходимые предпосылки для развития клубеньковых симбиозов с бактериями— причем "генетическая программа" клубенькового симбиоза представляет собой модификацию "генетической программы" арбускулярной микоризы. Чтобы подтвердить или опровергнуть это предположение, ученые провели серию генно-инженерных экспериментов.

Растение Datisca glomerata (фото с сайта bornnaturalist.org)

Рис. 2.2. Растение Datisca glomerata (Katharina Markmann, 2008)

Первый эксперимент показал, что ген SYMRK необходим не только для АМ и СБР (что было известно и ранее), но и для АР. Ученые отключили ген SYMRK у растения Datisca glomerata, корни которого в норме образуют АМ и АР (рис. 2.2). результате растение практически полностью утратило способность к формированию обоих симбиозов— и с грибом, и с актинобактерией Frankia. Тем самым впервые удалось показать, что ген SYMRK необходим для всех трех типов внутриклеточного симбиоза: АМ, СБР и АР. Стало ясно, что АР имеет, скорее всего, примерно ту же генетическую "основу", что и СБР ( ранее о генетики АР не было известно практически ничего).

Второй эксперимент показал, что ген SYMRK не служит для распознавания конкретных бактерий-симбионтов. Бобовое растение лядвенец японский (Lotus japonicus) образует СБР с бактерией Mesorhizobium loti, алюцерна (Medicago truncatula)— с бактерией Sinorhizobium melioti. Мутантной люцерне, имеющей "испорченный" ген SYMRK и не способной формировать ни АМ, ни СБР, пересадили "здоровый" ген SYMRK от лядвенца. Эта операция полностью восстановила способность люцерны образовывать оба типа симбиоза. При этом трансгенная люцерна стала образовывать СБР со "своей" исконной бактерией Sinorhizobium, а вовсе не с Mesorhizobium. Таким образом, SYMRK не отвечает за распознавание и выбор бактериального симбионта, а только за общую способность формировать внутриклеточный симбиоз с бактериями. Распознавание осуществляется другими белками, какими именно— пока не установлено.

Третий эксперимент показал, что для обеспечения нормального клубенькового симбиоза, равно как и микоризы(АМ), вполне подходит любой "длинный" вариант гена SYMRK, взятый хоть у бобового растения, образующего СБР, хоть у растения с АР, хоть у вида, вовсе не образующего клубеньков. Для эксперимента были использованы мутантные растения Lotus japonicus, у которых ген SYMRK кодирует нефункциональный белок с испорченным киназным доменом. Эти растения не могут образовывать ни СБР, ни АМ. Им пересаживали гены SYMRK от разных растений, имеющих длинный вариант этого гена: от других бобовых, образующих СБР (люцерны), от актиноризных растений (Datisca glomerata) и, наконец, от бесклубеньковых родственников (настурции Tropaeolum majus). Все эти операции привели к полному восстановлению у мутантного лядвенца АМ и СБР (разумеется, со"своей" бактерией Mesorhizobium).

Четвертый эксперимент показал, что укороченные варианты гена SYMRK достаточны для АМ, но не для клубеньковых симбиозов. Как и в третьем эксперименте, использовали мутантную форму лядвенца японского, не образующую ни АМ, ни СБР. Растениям пересаживали "средний" вариант гена, взятый у помидора, и "короткий" вариант, позаимствованный у риса. В обоих случаях у мутантного лядвенца восстановилась способность к формированию АМ, но не СБР. На основе этих и ряда других экспериментов и наблюдений ученые заключили, что белок SYMRK, по-видимому, необходим для формирования особых внутриклеточных структур— своеобразных "с имбионтоприемников" или "пре-инфекционных нитей" (pre-infection threads), которые впоследствии заселяются симбиотическими бактериями (и тогда их уже называют "инфекционными нитями"). Похожие "симбионтоприемники" образуются в клетках корней и перед принятием грибных симбионтов при формировании АМ (эти структуры называются pre-penetration apparatus). Сходство в строении и механизмах формирования этих "симбионтоприемников", по-видимому, отражает единство генетической программы, отвечающей за формирование всех трех типов внутриклеточного симбиоза: АМ, СБР и АР. Мутации в некоторых "общих генах симбиоза" приводят к нарушению формирования "симбионтоприемников" (SYMRK, конечно, не единственный ген, необходимый для их формирования). Следует подчеркнуть, что "длинная" версия белка SYMRK, очевидно, является необходимым, но недостаточным условием формирования клубеньковых симбиозов. Это видно из того, что такие симбиозы могут формировать не все, а только некоторые обладатели "длинной" версии. По-видимому, растения, образующие клубеньки, должны обладать еще какими-то генетическими особенностями, которые пока не удалось обнаружить.

В целом, однако, полученные результаты убедительно подтверждают гипотезу, согласно которой способность к формированию клубеньковых симбиозов (АР и СБР) развилась на основе древней генетической программы АМ. Ключевое эволюционное событие заключалось в том, что клетки корней приобрели способность реагировать формированием "симбионтоприемников" не только на присутствие симбиотических грибов, но и на близость азотфиксирующих бактерий. Очень похоже, что в основе этого события лежало изменение структуры белка SYMRK, а именно добавление двух новых рецепторных доменов к его внеклеточной части. Оба эти домена могли быть заимствованы у генов других белков, имеющихся в геноме высших растений. Таким образом, возникновение клубеньковых симбиозов— яркий пример формирования новой функции путем модификации генного комплекса, ранее служившего для иных целей. Арбускулы— видоизменения мицелия у грибов - микоризообразователей, аналогичные гаусториям. Являются многократно дихотомически разветвлёнными гифами сложной формы, проникающими в паренхимальные клетки корня. Окружены внутри клетки клеточной плазмалеммой. В арбускулах происходит наиболее интенсивный обмен метаболитами между компонентами микоризы, хотя они и существуют лишь несколько дней (в последствии растворяются). Исследователями считается, что арбускулы образуются под влиянием защитной реакции клеток растения (Katharina Markmann и др., 2008)

Морфологические особенности различных типов микоризы

Рис. 2.3. Морфологические особенности различных типов микоризы (



Информация о работе «Биологическая сущность микоризы»
Раздел: Биология
Количество знаков с пробелами: 28186
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
40134
0
2

... веществ. Следовательно, обменные явления тесно связывают организм растения со средой. Связь эта двоякая. Во-первых, растение оказывается зависимым от среды. В среде должны быть все необходимые для жизни растения материалы. Недостача, тем более отсутствие той или иной категории пищевых материалов должны привести к замедлению или даже прекращению жизненных явлений, к смерти. Во-вторых, поглощая из ...

Скачать
59573
0
1

... растений. Современные представители Хвойных это вечнозеленые, реже листопадные деревья и кустарники. По одной из классификационных систем эта группа объединяется в класс Хвойные или Пинопсиды (Pinopsida) отдела Голосеменных растений (Gymnospermae). Этот класс разделяется на два подкласса: вымерший подкласс Кордаиты (Cordaitidae) и современный подкласс Хвойные (Pinidae или Coniferae). По другой ...

Скачать
64867
5
0

... учащиеся не могли получить в процессе лабораторной работы. При подведении итогов использую таблицы. Глава 2. Использование метода беседы для развития самостоятельности учащихся на уроках ботаники в v классе лабораторный практикум ботаника самостоятельный беседа Применению метода беседы в учебном процессе уделяли внимание многие дидакты и методисты. В помощь учителю приводились рекомендации ...

Скачать
74453
0
1

... , и потому оно должно бережно относится к биосфере (в сущности мы все зависим от ее благополучия). Значимость биоразнообразия можно также характеризовать в эстетическом, сущностном и этическом плане. Природа прославляется и воспевается художниками, поэтами и музыкантами всего мира; для человека природа является вечной и непреходящей ценностью. Разнообразие можно рассматривать, как важнейший ...

0 комментариев


Наверх