3. МЕТОДИКА ИЗУЧЕНИЯ ВОПРОСА О СВЕТОВЫХ КВАНТАХ

 

3.1. ВНЕШНИЙ ФОТОЭФФЕКТ

Фотоэффект, его законы занимают особое место в истории физики. Явление фотоэффекта было одним из основных среди явлений, исследование которых привело к созданию квантовой теории вообще и квантовой теории света в частности. Фотоэффекту отводят, поэтому центральное место в начале изучения квантовой оптики. Именно из рассмотрения закономерностей фотоэффекта обычно в средней школе вводят представление о световых квантах.

Сущность явления внешнего фотоэффекта и его главные закономерности заключаются, как известно, в следующем: под действием электромагнитного излучения наблюдается испускание (эмиссия) электронов из металлов. Явление это практически безынерционно. Число испускаемых электронов определяется интенсивностью падающего излучения, скорость же вырываемых электронов не зависит от интенсивности света и определяется только его частотой. При частоте света меньше определенной (характерной для каждого металла) фотоэффект не наблюдается. Эти закономерности были установлены экспериментально и задолго до создания квантовой теории. Но все попытки объяснить их на основе волновых представлений электромагнитной теории света терпели неудачу.

Обычно в учебной литературе эти закономерности формулируют как два, три (и даже четыре) закона фотоэффекта. Правда, такого строгого деления законов на первый, второй, третий (как, например, для законов динамики Ньютона) не существует. В нумерации законов, их последовательности и числе есть определенный произвол. Формулировки законов приводят как для макропроцессов (через фототок), так и для микропроцессов (через фотоэлектроны). Приведем ниже одну из принятых формулировок законов фотоэффекта.

1. Сила фототока насыщения пропорциональна интенсивности света. Количество электронов, вырываемых с катода за 1 с, пропорционально поглощаемой за это время энергии световой волны.

2. Максимальная начальная скорость фотоэлектронов определяется частотой света и не зависит от его интенсивности.

3. Для каждого вещества существует красная граница фотоэффекта, т. е. такая наименьшая частота излучения v0, при которой еще возможен внешний фотоэффект; значение этой частоты зависит от химической природы вещества и состояния его поверхности; при частоте излучения, меньшей красной границы фотоэффекта (v< v0), фотоэффект не происходит.

4. Фотоэффект практически безынерционен.

Введение новых для учащихся квантовых представлений о свойствах света является непростой методической задачей. Понимание квантовой природы взаимодействия света с веществом «не лежит на поверхности» фотоэффекта, к такому пониманию мы подводим учащихся в результате многоступенчатого логического рассуждения в ходе обсуждения результатов эксперимента. В методике изучения фотоэффекта можно выделить несколько этапов:

1. Знакомство учащихся с самим явлением фотоэффекта. Рассказ об истории его открытия (Г. Герц).

2. Рассказ о поиске закономерностей этого явления. Исследования А. Г. Столетова.

3. Рассмотрение основных закономерностей фотоэффекта. Показ, вскрытие имеющихся трудностей — невозможность объяснить все законы фотоэффекта с известных уже учащимся позиций (волновой теории света).

4. Выдвижение гипотезы световых квантов. Рассказ о работе А. Эйнштейна. Уравнение фотоэффекта.

5. Объяснение всех закономерностей фотоэффекта с квантовых позиций.

6. Выводы квантовой тёории о природе света.

7. Вакуумные и полупроводниковые фотоэлементы. Применение фотоэффекта в технике.

Раскроем основные из этих этапов.

К пониманию явления фотоэффекта и его закономерностей лучше всего подвести школьников с помощью эксперимента. На первом уроке по теме обычно предлагают серию опытов.

1) Закрепленную на стержне электрометра хорошо очищенную цинковую пластину заряжают отрицательно и освещают потоком ультрафиолетовых лучей. Наблюдают разряд электрометра.

2) Разряд прекращается, если мы перекрываем поток лучей стеклом.

З) Если же сообщить пластине положительный заряд, то при таком же освещении разряд электрометра не наблюдается.

4) Разряд происходит тем быстрее, чем больше интенсивность света.

5) Заменив цинковую пластину медной (затем свинцовой), повторяют опыты при тех же условиях (тот же источник света и начальный заряд).

Если в школе нет хорошего источника ультрафиолетового излучения и постановка эксперимента на уроке затруднена, то целесообразно провести объяснение на основе использования видеофильма «Фотоэффект», в первых кадрах которого показаны описанные выше демонстрации.

Предложенная последовательность демонстраций (или просмотр кадров видеофильма) позволяет проводить первый урок по теме методом эвристической беседы.

В ходе беседы последовательно обсуждают следующие вопросы: почему заряженная пластина может сохранять заряд в течение длительного времени? Какими способами можно разрядить пластину? Как объяснить быстрый разряд отрицательно заряженной пластины при ее освещении светом дуги? Будет ли при действии ультрафиолетового излучения разряжаться положительно заряженная цинковая пластина? Почему электрометр не обнаруживает изменения заряда в этом случае? Наблюдаем ли мы разряд медной пластины при тех же условиях опыта? Почему прекращается разряд отрицательно заряженной цинковой пластины, если свет от электрической дуги перекрыть стеклянной пластиной?

Проведенное обсуждение позволяет сделать выводы:

1. Под действием света разряжаются только отрицательно заряженные металлы. Следовательно, при некоторых условиях свет способен вырывать электроны из металлов. Это явление называют фотоэффектом. (Здесь же можно рассказать и об истории открытия фотоэффекта.)

2. Разряд начинается одновременно с началом освещения, следовательно, фотоэффект практически безынерционен. (Точные опыты показали, что время между началом облучения и началом фотоэффекта не превышает 10-9 с.)

3. Наличие фотоэффекта зависит от рода и обработки освещаемого металла и от спектрального состава излучения, скорость разряда зависит также и от падающей в единицу времени световой энергии.

При формулировке выводов приходится избегать понятий «освещенность», «световой поток», так как их по программе общеобразовательной средней школы не изучают, а использовать главным образом понятие «энергия световой волны» и говорить об энергии, которая за 1 с переносится световой волной через поперечное сечение, перпендикулярное к направлению распространения света (т. е. об интенсивности света).

Изучение закономерностей фотоэффекта продолжают на установке, позволяющей исследовать зависимость силы фототока от приложенного напряжения, интенсивности и спектрального состава излучения. В названном выше видеофильме «Фотоэффект» эта зависимость исследована на установке, подобной установке А. Г. Столетова (цинковый диск освещен ультрафиолетовым светом дуговой лампы сквозь латунную сетку; в цепь включен гальванометр и подано напряжение от аккумуляторной батареи). На уроке эксперимент проводят с помощью вакуумного фотоэлемента, для чего собирают установку по схеме, приведенной на рис. Вначале экспериментально устанавливают существование силы тока насыщения, а затем — его зависимость от интенсивности падающего на катод света (первый закон фотоэффекта — закон Столетова). По результатам эксперимента строят графики зависимости силы фототока при двух разных интенсивностях света от напряжения U.

После этого, освещая фотоэлемент светом определенной частоты, с помощью потенциометра «запирают» фотоэлемент и измеряют запирающее напряжение, что позволяет определить максимальную скорость вылетающих электронов:

.

Меняя светофильтры, получают при повторении опытов новые данные и убеждают учащихся в том, что максимальная скорость вылета электронов зависит от частоты падающего света и не зависит от интенсивности света (второй закон фотоэффекта).

Далее приступают к объяснению законов фотоэффекта. Само явление и то, что сила фототока насыщения прямо пропорциональна падающей в единицу времени световой энергии - первый закон фотоэффекта, можно объяснить и с волновых позиций. Объяснение того, почему существует порог фотоэффекта (красная граница), почему максимальная начальная скорость (и максимальная кинетическая энергия фотоэлектронов) не зависит от интенсивности света, а определяется только его частотой (линейно возрастает с частотой), а также объяснение безынерционности фотоэффекта не может быть дано на основе волновой электромагнитной теории света. Ведь по этой теории вырывание электронов из металла является результатом их «раскачивания» в переменном электрическом поле световой волны. Но тогда и скорость и кинетическая энергия фотоэлектронов должны зависеть от амплитуды вектора напряженности электрического поля волны и, следовательно, от ее интенсивности, на «раскачку» электрона требуется время, эффект не может быть безынерционным. Несоответствие экспериментальных фактов сложившейся волновой теории света доказывало ее несостоятельность и требовало создания новой теории

Далее рассказывают о том, что трудности в объяснении законов фотоэффекта были не единственной причиной создания теории. В 1900 г. М. Планк для объяснения теплового излучения вынужден был высказать, на первый взгляд, нелепую идею, что тело излучает энергию не непрерывно, а отдельными порция (квантами). Эта идея противоречила сложившимся представлениям классической физики, где процессы и величины, их характеризующие, изменяются непрерывно. Эту непонятную и поэтому мало кем принятую идею в 1905 г. А. Эйнштейн использовал для объяснения законов фотоэффекта. Он пошел далее М. Планка и утверждал: свет не только испускается, но и распространяется и поглощается квантами.

Иначе говоря, поток монохроматического света, несущий энергию Е, представляет собой поток n частиц (названных позднее фотонами), каждая из которых обладает энергией hv:

.

Энергия фотона пропорциональна частоте света. Чем больше частота (меньше длина волны) излучения, тем большую энергию несет каждый его фотон.

Далее Эйнштейн предположил: каждый фотон взаимодействует не со всем веществом, на которое падает свет, и даже не с атомом в целом, а с отдельным электроном атома. Фотон отдает свою энергию электрону, а электрон, получив энергию, вырывается из металла с определенной кинетической энергией. На основе закона сохранения энергии можно записать следующее уравнение для элементарного акта взаимодействия фотона с электроном:

,

где hv — энергия фотона, A – работа выхода электрона из металла,

— максимальная кинетическая энергия, которую может приобрести электрон.

После этого объясняют экспериментальные законы фотоэффекта с точки зрения квантовой теории. Сила фототока насыщения пропорциональна числу электронов, вылетающих за 1 с с освещаемой поверхности; интенсивность света — числу ежесекундно падающих фотонов. Так как каждый фотон может выбить с поверхности металла лишь один электрон, то естественно, что сила фототока насыщения (число вырванных электронов) будет пропорциональна интенсивности света (числу падающих фотонов).

Важно при этом подчеркнуть, что наблюдают прямую пропорциональность, а не равенство, так как часть падающих на металл фотонов отражается, а из поглощенных фотонов не все вырывают из металла свободные электроны. Энергия части поглощенных фотонов превращается во внутреннюю энергию металла. Поэтому отношение числа электронов n к числу падающих на металл фотонов nф значительно меньше единицы (для чистых металлов примерно в 1000 раз).

Далее объясняют, почему наибольшая кинетическая энергия фотоэлектронов зависит от частоты падающего света, а не от его интенсивности (второй закон фотоэффекта). Из уравнения Эйнштейна следует:

Так как для данного вещества работа выхода постоянна (А =const), то наибольшая кинетическая энергия фотоэлектронов пропорциональна частоте падающего света. Анализируют случай, когда энергия светового кванта равна работе выхода А:

или

Следовательно, вся энергия фотона идет на совершение работы выхода и скорость электронов равна нулю. Минимальная (граничная) частота фотоэффекта v0 равна А/h, а максимальная длина волны . При условии v < v0 и λ> λ0 фотоэффекта нет. Это длинноволновая (красная) граница фотоэффекта. Ее значение зависит только от работы выхода, т. е. от химической природы металла, и может лежать на любом участке оптического диапазона. Для каждого вещества есть определенная длинноволновая граница фотоэффекта (третий закон фотоэффекта).

Таким образом, уравнение Эйнштейна объясняет все законы внешнего фотоэффекта. Оно позволяет вычислять скорости фотоэлектронов и определять наибольшую длину волны, при которой еще наблюдается явление фотоэффекта для данного вещества, а также вычислить работу выхода для конкретного металла.

После анализа уравнения Эйнштейна можно показать, как была осуществлена экспериментальная проверка этого уравнения. Она состояла в определении постоянной Планка из результатов опыта.

Так как работа выхода для данного вещества — величина постоянная, то кинетическая энергия фотоэлектрона является линейной функцией частоты излучения, падающего на фотоэлемент. Точка В соответствует граничной частоте фотоэффекта, а отрезок ОС — работе выхода А. Измерив задерживающее напряжение и определив работу выхода (зная граничную частоту для данного металла), можно по этим данным найти постоянную Планка

 , ,

откуда

 ,  .

Таким образом, тангенс угла наклона прямой к оси частот равен постоянной Планка, т. е.

Для всех металлов этот угол одинаков.

При практическом проведении таких измерений встретились большие трудности. Первые тщательные измерения постоянной Планка этим методом были выполнены в 1915 г. Р. Милликеном. Он получил значение, близкое к тому, какое было уже известно из теории теплового излучения.

В нашей стране в 1928 г. опытами П. И. Лукирского и С. С. Прилежаева была подтверждена линейная зависимость кинетической энергии фотоэлектронов от частоты падающего света и получено значение постоянной Планка.

Для закрепления уравнения Эйнштейна решают задачи на вычисление скорости и энергии электронов, красной границы фотоэффекта, работы выхода.

Рис. 5

 

Информация о работе «Методика изучения квантовой оптики в базовой и профильной школах»
Раздел: Физика
Количество знаков с пробелами: 48149
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
17523
0
0

... прогрессивные тенденции, наметившиеся в системе образования. Место учебного предмета "Физика" в федеральном базисном учебном плане. Федеральный компонент базисного учебного плана предусматривает изучение физики в 7-9 классах основной школы по 2 часа в неделю. На старшей ступени обучения вводится два уровня изучения физики: базовый и профильный. На базовом уровне на изучение физики выделяется 2 ...

Скачать
149070
17
18

... программного комплекса ведется на основании задания на дипломную работу, утвержденное приказом ректора Донбасской машиностроительной академии по ГОСТ 19.101-77. Тема дипломной работы – «Программно – методический комплекс для мультимедийного представления учебной информации». Спецчасть разработки – «Разработка программного обеспечения для интерфейса оболочки комплекса и примера информационного ...

Скачать
86032
6
2

... должно быть кратким, свободным, учащиеся включаются в дискуссию по обсуждению проектов. Как правило, на данном этапе следует обратить внимание на перспективы работы над данным проектом. ГЛАВА 2 ЭЛЕКТИВНЫЙ КУРС ПО ФИЗИКЕ «АЛЬТЕРНАТИВНАЯ ЭЛЕКТРОЭНЕРГЕТИКА»   Пояснительная записка Образовательная область: физика Возрастная группа: 9 класс Вид элективного курса: предпрофильный. Тип ...

Скачать
47419
1
0

... с учеником, в ходе которого обучаемый получает дополнительные сведения и глубже усваивает материал. Можно использовать как итоговый по темам, определяя уровень учащегося по усвоению основных естественнонаучных умений и овладению навыкам решения физических задач разного уровня сложности. Можно сконцентрировать внимание на умении решать разного уровня сложности-ступени задачи, включая задачи из ...

0 комментариев


Наверх