Анализ воздействия объекта на окружающую среду

Электроснабжение блока ультрафиолетового обеззараживания (УФО) очищенных сточных вод на Люберецких очистных сооружениях (ЛОС)
Расчет мощности ЭП Схема питающей электросети от РП до КТП УФО Выбор электрооборудования ГРЩ Выбор марки и сечения отходящих от ГРЩ кабельных линий Заземление, молниезащита Решения по комплексу технических средств Отображение информации Анализ воздействия объекта на окружающую среду Защита от электрической дуги Защита от шума Мероприятия и средства по защите окружающей среды от выбросов ЛОС Расчет защитного заземления встроенной КТП Организационно-экономическая часть Управление энергохозяйством, организация эксплуатации и ремонта электрооборудования и сетей блока УФО Расчёт численности и их основной и дополнительной заработной платы ремонтного и эксплуатационного персонала блока УФО Расчёт основной и дополнительной заработной платы Технико-экономические показатели электроснабжения блока УФО
108487
знаков
24
таблицы
5
изображений

7.2.2 Анализ воздействия объекта на окружающую среду

7.2.2.1  Загрязнение водоёмов

Потребление воды на хозяйственно-питьевые нужды не предусматривается, так как работа сооружений полностью автоматизирована.

Водопроводная вода расходуется только на производственные нужды: промывку щелей сит один раз в пол года и промывку УФ модулей- один раз в пол года. Расход воды 2,4 (74,4 ).

Ливневые и талые воды с территории блока УФО, а также стоки полу- чаемые в процессе промывки щелей сит и УФ модулей, собираются и поступают в голову очистных сооружений.

Возможно загрязнение водоёмов трансформаторным маслом в объёме 2´1250 кг.

Вытекшее трансформаторное масло собирается в маслоприёмники, смонтированные в трансформаторных камерах (2250´1150´1800) с уклоном 2° к наружным стенам камер. В маслоприёмниках смонтированы трубы для откачки масла.

7.2.2.2  Загрязнение почвы

Возможно загрязнение почвы мусором и ртутью, вышедших из строя люминесцентных ламп. Ртуть особенно опасна при попадании в водоёмы, так как по цепи питания она может попасть в пищу людей. К тому ртуть обладает кумулятивным эффектом.

7.2.2.3  Энергетические загрязнения

На проектируемом объекте источником шума является технологическое (насосы) и вентиляционное оборудование.

Насосное оборудование расположено в закрытых помещениях и шум от их работы практически не влияет на акустический режим прилегающей территории.

Уровень звука: максимальный – 75 дБ А; средний – 65 дБ А.

7.2.3  Анализ возможности возникновения чрезвычайных ситуаций на объекте

Источником возникновения чрезвычайных ситуаций может служить система электроснабжения проектируемого объекта вследствие возникновения возгорания трансформаторного масла и изоляции кабельных линий и проводов, а также опасность поражения атмосферным электричеством.

Возгорание трансформаторного масла (tвспышки=140°С) возможно вследствие:

-   витковых замыканий обмоток трансформатора;

-   междуфазных замыканий внутри корпуса трансформатора;

-   однофазных замыканий на корпус внутри трансформатора.

Возгорание изоляции кабельных линий и проводов, скорость распространения огня которых составляет 0,45-0,5 м/мин в вертикальном направлении и 0,18-0,2 м/мин в горизонтальном направлении, возможно вследствие:

-   коротких замыканий;

-   ошибочных действий с коммутационными аппаратами.

Мероприятия по защите трансформаторов см. п. 7.

Для защиты от ошибочных действий с коммутационными аппаратами применяются блокировочные устройства, запрещающие включение заземляющих ножей при включённых выключателях нагрузки; указатели, соответствующие положению аппарата (включено, отключено).

Опасность поражения атмосферным электричеством определяется грозовой активностью в месте расположения объекта – г. Москва. Для этой местности:

·  интенсивность грозовой деятельности – 40-60 ч/год;

·  среднее число ударов молнии в 1 км2 земной поверхности – 2,68-4,02 1/(км2·год).

Разновидность поражений объекта:

·  прямой удар молнии;

·  электромагнитная индукция.

Для защиты встроенной КТП от прямых ударов молний на крыше здания выполняется молниеприёмная сетка, имеющая жесткую металлическую связь с наружним контуром заземления.

7.3 Мероприятия и средства по обеспечению безопасности труда.

7.3.1 Электробезопасность

7.3.1.1 Защита от прикосновения к токоведущим частям

Проектом предусмотрено:

·  изоляционные расстояния в ЗРУ, ГРЩ предписанные в ПУЭ, гл.4.1 и 4.2;

·  применение, магистральных щитов, групповых щитов, ящиков и шкафов управления, степень защиты не менее; IP21 – для помещений с нормальной средой; IP44 – для открытых установок; IP43 – для помещений сырых и особо сырых;

·  малое напряжение для ручных электрических светильников:

- ниже 50 В- в помещениях с повышенной опасностью и особо опасных и 12 В- при работах в особо неблагоприятных условиях в соответствии с п.1.7.30.[1] ;

·  комплект электрозащитных средств для распределительных устройств всех напряжений в соответствии с ПТЭЭП и ПОТРМ-016.

Для встраиваемой КТП:

·  комплектное распределительное устройство высокого напряжения КРУ ВН, степень защиты IP67;

·  распределительное устройство низкого напряжения РУ НН, степень защиты IP21.

7.3.1.2  Защита от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, оказавшимся под напряжением.

Для обеспечения безопасного обслуживания встроенной КТП, согласно ([1], гл.1.7, гл.7.1), проектом предусмотрено:

·  Защитное заземление в ЗРУ-10 кВ с изолированной нейтралью;

·  Зануление в ГРЩ- 0,4 кВ с глухозаземлённой нейтралью;

·  выравнивание потенциалов путем объединения следующих проводящих частей: наружный контур заземления, главная заземляющая шина; стальные трубы коммуникаций здания; металлические части строительных конструкций; молниезащита; системы центрального отопления, вентиляции и кондиционирования.

·   путём устройства контуров заземления ЗРУ, ГРЩ;

·  Контроль изоляции сети 10 кВ с изолированной нейтралью с действием на сигнал и с последующим контролем ассиметрии напряжения;

·  Применение в ЗРУ-10 кВ электрооборудования современных конструкций, токоведущие части которого недоступны для персонала, не требуют доступа к токоведущим частям при проверке наличия напряжения и фазировке и имеют надёжную, с видимым положением заземляющих контактов систему заземления;

·  Применение в ГРЩ-0,4 кВ сборок низкого напряжения и панелей АВР, токоведущие части которых ограждены. На сборке имеется стационарная система заземления сборных шин;

·  Выполнение доступной для осмотра системы заземления металлических конструкций, на которых установлено электрооборудование. Внутренний контур заземления выполняется из полосовой стали 4х40 мм, а присоединения к нему в регламентированных местах соответствующих металлоконструкций – гибким медным проводом (МГ-25). Имеются места для присоединений переносных заземлений при проведении испытаний и измерений;

·  Выполнение четких надписей о принадлежности оборудования внутри помещения и снаружи; установка соответствующих плакатов на дверях и барьере в отсеке трансформатора; обозначение коммутационных аппаратов и диспетчерских наименований присоединений;

·  Наличие в каждом блоке КТП ящиков собственных нужд, которые обеспечивают безопасное подключение измерительных приборов и переносного освещения напряжением 12 В. КТП укомплектованы резиновыми диэлектрическими ковриками для отсеков РУ 0,4 – 10 кВ и переносной деревянной подставкой, которая используется при замене ламп освещения, расположенных над дверью на высоте 2,1 м;

·  Установка устройства защитного отключения (УЗО) для защиты групповых линий, питающих штепсельные розетки для переносных электрических приборов.


Информация о работе «Электроснабжение блока ультрафиолетового обеззараживания (УФО) очищенных сточных вод на Люберецких очистных сооружениях (ЛОС)»
Раздел: Физика
Количество знаков с пробелами: 108487
Количество таблиц: 24
Количество изображений: 5

0 комментариев


Наверх