5.3 Защита от однофазных замыканий на землю

Защита выполняется с действием на сигнал.

1) Выбираем реле РТЗ-51, ток срабатывания которого находится в пределах  А.

2) Измерительным органом является трансформатор тока нулевой последовательности типа ТЗРЛ.

3) Для кабеля марки А-185 удельный емкостный ток однофазного замыкания на землю  А/км.

Ток нулевой последовательности линии, обусловленный током утечки,

 А. (5.17)

Ток срабатывания защиты:

, (5.18)

здесь  – коэффициент отстройки для защиты без выдержки времени.

 А.

4) Проверку чувствительности защиты не производим, так как неизвестен ток утечки для всей сети предприятия, определяемый экспериментально.

6. Расчёт защиты силового трансформатора Т1

На силовом трансформаторе устанавливаются следующие виды защит:

1) дифференциальная защита от различных видов короткого замыкания;

2) максимальная токовая защита как резервная от внешних многофазных коротких замыканий;

3) защита от перегруза;

4) газовая защита.

6.1 Дифференциальная защита

1) Защита выполняется с помощью дифференциального реле РСТ 15.

2) Номинальные токи обмоток трансформатора:

высшего напряжения

 А; (6.1)

низшего напряжения

 А; (6.2)

В формулах (6.1) и (6.2):

 – номинальная мощность трансформатора Т1, ВА;

 – напряжение высокой стороны трансформатора, В;

 – напряжение низкой стороны трансформатора, В.

3) Для выбора трансформаторов тока найдем максимальные рабочие токи: на стороне ВН


 А; (6.3)

на стороне НН

 А. (6.4)

На стороне ВН принимаем к установке трансформатор тока типа ТФЗМ-220Б-I-200-0,5/10Р/10Р/10Р:  А,  А.

Коэффициент трансформации трансформатора тока

. (6.5)

На стороне НН принимаем к установке трансформатор тока типа и ТШЛ-10-3000-0,5/10Р:  А,  А.

Коэффициент трансформации трансформатора тока

. (6.6)

Силовой трансформатор Т1 имеет схему соединения обмоток Ун/Д/Д, следовательно, для компенсации сдвига фаз трансформаторы тока на высокой стороне включаются по схеме полного треугольника (), а трансформаторы тока на низкой стороне — по схеме неполной звезды ().

Вторичные токи трансформаторов тока в номинальном режиме работы:


 А; (6.7)

 А. (6.8)

За основную сторону принимаем сторону НН, так как .

4) Определяем токи небаланса, вызванные погрешностями трансформаторов тока  и регулированием напряжения под нагрузкой (РПН) . При этом все токи приводим к ступени напряжения основной стороны.

Определим ток небаланса :

, (6.9)

где  – коэффициент однотипности трансформаторов тока;

 – коэффициент апериодической составляющей для дифференциального реле;

 – допустимая погрешность трансформаторов тока;

– максимальный сквозной ток, приведенный на высокую сторону, А.

 А.

Определим ток небаланса :


, (6.10)

где  — пределы регулирования напряжения на стороне ВН;

 — пределы регулирования напряжения на стороне СН.

 А.

Предварительное значение тока срабатывания защиты по условию отстройки от токов небаланса

, (6.11)

где  – коэффициент отстройки.

 А.

Ток срабатывания защиты по условию отстройки от броска тока намагничивания

, (6.12)

где  – коэффициент отстройки.

 А.

Из двух токов срабатывания выбираем наибольший, то есть  А.

5) Предварительное значение коэффициента чувствительности защиты определяем по току двухфазного короткого замыкания на секции Г, приведенному на сторону ВН.

. (6.13)

6) Ток срабатывания реле на основной стороне

 А. (6.14)

Ток срабатывания реле на неосновной стороне

 А, (6.15)

где  – коэффициент трансформации силового трансформатора.

7) Примем число витков основной обмотки .

Расчетная МДС основной обмотки

 А·витков. (6.16)

Принимаем ближайшее стандартное значение МДС  .

Расчетное число витков неосновной обмотки находится из условия


. (6.17)

Принимаем .

Составляющая тока небаланса  из-за неравенства расчетного и действительного числа витков

 А. (6.18)

8) Ток срабатывания защиты с учетом всех составляющих тока небаланса

 А, (6.19)

здесь  – коэффициент отстройки.

9) Коэффициент чувствительности определяем по току двухфазного короткого замыкания на секции Г, приведенному на сторону ВН:

.

Так как коэффициент чувствительности превышает требуемое нормированное значение, то защита удовлетворяет требованиям чувствительности.

10) Ток срабатывания реле на основной стороне


 А.

Ток срабатывания реле на неосновной стороне

 А.


Информация о работе «Релейная защита и расчет токов короткого замыкания»
Раздел: Физика
Количество знаков с пробелами: 32945
Количество таблиц: 10
Количество изображений: 18

Похожие работы

Скачать
19651
5
11

... . Предотвращение возникновения аварий или их развитие при повреждениях в электрической части энергосистемы может быть обеспечено путем быстрого отключения повреждённого элемента, для этого применяется релейная защита и автоматика. Основным назначением РЗ является автоматическое отключение повреждённого элемента (как правило кз) от остальной, неповреждённой части системы при помощи выключателей. ...

Скачать
70732
0
0

... концу горизонтального участка тормозной характеристики, поскольку в этом случае на реле отсутствует эффект торможения. Однако на блоках генератор-трансформатор, не имеющих устройства регулирования напряжения под нагрузкой, условие отстройки минимального тока срабатывания защиты от тока небаланса в указанных режимах не проверяется, так как автоматически выполняется при выборе тока срабатывания ...

Скачать
44192
10
8

... =0,3-0,5 – отстройка по времени.  с  с  с Принимаем  с Схема устройства АВР на секционном выключателе Q5 ГПП приведена в приложении 14. Расчет защиты генератора Согласно ПУЭ, для генераторов мощностью более 1 МВт предусматриваются устройства релейной защиты от следующих повреждений и нарушений нормального режима работы: - многофазные замыкания в обмотке статора и его выводах; - ...

Скачать
26077
8
2

... асинхронного двигателя напряжением 6-10 кВ Тип двигателя Рн, кВт Кпуск cosφн ηн КЛ, м АТД4 4000 5,7 0,89 0,973 55 Рис. 1. Схема электроснабжения АННОТАЦИЯ Чупина М. В. Релейная защита СЭС. – Челябинск: ЮУрГУ, Э, 2009, 43 с. 6 ил. 4 табл., библиогр. список – 4 наим. Задачей данного курсового проекта является рассмотрение вопросов проекти- ...

0 комментариев


Наверх