4. ОБЕРНЕННЯ ХВИЛЬОВОГО ФРОНТУ В НЕЛІНІЙНІЙ ОПТИЦІ

4.1 Поняття про обернену хвилю

Явище інверсії подій в часі має свою аналогію в когерентній оптиці. Нехай лазерний пучок, проходячи через середовище з нерегулярними неоднорідностями показника заломлення, зазнає розсіювання в різних напрямках. Якщо б нам вдалося повернути час назад, то ми побачили б як розбіжний світловий пучок підходить до неоднорідного середовища і, проходячи через нього, “виправляється” до ідеально направленого. В оптиці таку процедуру (інверсія часу) можна здійснити реально.

Існують дві сприятливі обставини реалізації цієї інверсії. По-перше, в лінійній оптиці прозорих середовищ, як геометричній, так і хвильовій, справедливий принцип часової інверсії: рівняння Максвела залишаються інваріантними при заміні знаку часу. Тому для будь-якого розв’язку хвильового рівняння, наприклад для пучка, розсіяного неоднорідним середовищем дійсно існує “обернений” розв’язок того ж рівняння.

По-друге, в оптиці був запропонований і реалізований цілий ряд методів створення оберненої хвилі. В когерентній оптиці дійсно вдається задати такі положення і напрямки, амплітуди і фази елементарних променів, щоб надалі в деталях відтворити поширення оберненої хвилі. Це вдається зробити в тому числі і тому, що когерентний лазерний пучок володіє відносно малим числом ступенів вільності (осциляторів поля), “узагальнені швидкості” яких треба обернути.

Хвильовим фронтом називається гіпотетична поверхня (або сімейство поверхонь), яка визначається умовою постійності фази коливань j(R)=const. Нормалі до цієї поверхні співпадають з променями, які характеризують локальний напрямок хвиль. Пряма і обернена хвилі мають в точності співпадаючі поверхні хвильового фронту, jоб(R)=-const, і поширюються точно назустріч одна одній. У зв’язку з цим операцію отримання оберненої хвилі називають “оберненням хвильового фронту” (ОХФ).

 

4.2 Практичне використання ОХФ

 

4.2.1 Двохпровідний підсилювач

Важливою задачею лазерної техніки є створення потужних малорозбіжних пучків. Для підвищення потужності пучка часто використовують оптичний підсилювач. Нажаль, високий енерговихід майже завжди супроводжується значним погіршенням структури випромінювання через оптичні неоднорідності в робочому середовищі підсилювача. Методи ОХФ дозволяють здійснити самокомпенсацію спотворень, які вносяться фазовими неоднорідностями підсилювача. При цьому компенсуються як статичні, так і динамічні (тобто ті які міняються від імпульсу до імпульсу або навіть на протязі імпульсу) спотворення. Двохпрохідна схема самокомпенсації представлена на рис.4.1 Нехай малопотужний, але малорозбіжний пучок спрямовується на вхід підсилювача з оптичними неоднорідностями. Підсилення пучка при першому проході одночасно збільшує його кутову розбіжність. Якщо пучок знов повернути в підсилювач, попередньо здійснивши ОХФ, то ця обернена хвиля, по-перше, додатково підсилиться. По-друге, що теж важливо, що неоднорідності, які на прямому проході спотворювали структуру пучка, при зворотному проході в точності компенсуються в оберненій і підсиленій хвилі. Якщо є два підсилювачі з однотипними неоднорідностями, то розглянуту схему можна модифікувати так, щоб другий прохід (після ОХФ) випромінювання здійснювало по другому підсилювачу.

4.2.2 Резонатори з ОХФ дзеркалом

Якщо в розглянутій вище основній схемі підсилення за два проходи виявляється недостатнім, то можна скористатися схемою з великим числом пар проходів. Нехай частина якісного по структурі випромінювання, покращеного за кожну пару проходів, повертається назад в підсилювач за рахунок відбивання від звичайного дзеркала. Останнє разом з ОХФ дзеркалом утворюють оптичний резонатор. Цей резонатор може працювати як в режимі регенеративного підсилення вхідного сигналу, так і в режимі генерації від власних спонтанних шумів. Для отримання малорозбіжного випромінювання в режимі власної генерації тут, як і в лазері з звичайними дзеркалами, потрібна установка діафрагми, яка усуває генерацію вищих поперечних мод. Але використання ОХФ полегшує отримання вихідного пучка дифракційної якості, якщо в елементах резонатора присутні оптичні неоднорідності, завдяки ефекту самокомпенсації спотворень.

4.2.3 Компенсація спотворень зображення в світловоді

Припустимо, що на вхід волоконного світловода подається зображення, яке переноситься когерентним монохроматичним променем з розподілом електричного поля в поперечному перерізі E0(r). Це поле збуджує деяку кількість мод з різними поперечними індексами. В процесі поширення це зображення спотворюється через відмінності фазових швидкостей різних поперечних мод. Якщо випромінювання після проходження довільної довжини L обернути, то після зворотного проходу по світловоду отримаємо початкове зображення в результаті ефекту самокомпенсації. Точніше кажучи, отримаємо відновлене поле E2(r)~E0(r), яке дає те ж зображення, тобто картину інтенсивності I2(r)~|E0(r)|2, що і у початкового поля. Дійсно, світловод без втрат можна розглядати в якості спотворюючого елементу. Більш того, якщо світловод ідеально однорідний (однаковий) по всій довжині, то зворотній прохід по тому ж світловоду можна замінити на еквівалентний йому прохід по другому світловоду тієї самої довжини L (рис.4.2).


Рис. 4.1 Двохпрохідна схема самокомпенсації спотворень підсилювача

Рис. 4.2 Схема компенсації спотворень, що вносяться оптоволокном

Тим самим передачу зображень по багатомодовому волоконному світловоду можна здійснити без спотворень, якщо використовувати дві послідовні ділянки світловода однакової довжини з операцією обернення або фазового спряження в проміжку між ними. Якщо ми хочемо відновити не тільки інтенсивність, але і поле, то після другого світловода слід встановити ще один фазоспряжуючий пристрій.


Информация о работе «Практичне застосування фоторефрактивного ефекту»
Раздел: Физика
Количество знаков с пробелами: 40017
Количество таблиц: 0
Количество изображений: 10

0 комментариев


Наверх