4. Опыт «Пробирка».

Первый взгляд на чай, налитый в чашку, подтверждает известное положение, что жидкость своей формы не имеет, а принимает форму сосуда, в который она налита. Возьмем пробирку, наполненную водой. Перевернем на книгу или открытку и будем постепенно вытаскивать открытку. Ни одна капля не пролилась, зато поверхность воды вздулась, образовав «горку». Все системы стремятся уменьшить свою энергию. Точно так же сила поверхностного натяжения стремится сократить до минимума площадь поверхности жидкости. Из всех геометрических форм шар обладает при данном объеме наименьшей поверхностью. Так что собственная форма жидкости – шар. Большое количество жидкости не может сохранить шарообразную форму; она изменяется под действием силы тяжести. Если устранить действие силы тяжести, то под действием молекулярных сил жидкость примет форму шара.

5. Опыт «Плато»

Если взять смесь воды и спирта и поместить в нее каплю жидкого масла, то в какой-то момент сила тяжести уравновесится силой Архимеда и образовавшийся масляный шар, свободно покоящийся в смеси. Этот шар от разлета по молекулам удерживает сила поверхностного натяжения. Устранить действие силы тяжести при изучении поверхностного натяжения жидкостей впервые догадался в середине прошлого века бельгийский ученый Ж. Плато, свой метод Плато применил для исследования различных явлений.

6. Роль поверхностного натяжения в жизни.

Роль поверхностного натяжения в жизни очень разнообразна. Осторожно положите иглу на поверхность воды. Поверхностная пленка прогнется и не даст игле утонуть. По этой же причине легкие водомерки могут быстро скользить по поверхности воды, как конькобежцы по льду.

Прогиб пленки не позволит выливаться воде, осторожно налитой в достаточно частое решето. Так что можно «носить воду в решете». Это показывает, как трудно порой, даже при желании, сказать настоящую бессмыслицу. Ткань – это то же решето, образованное переплетением нитей. Поверхностное натяжение сильно затрудняет просачивание воды сквозь нее, и потому она не промокает насквозь мгновенно.

В своем стремлении сократиться поверхностная пленка придавала бы жидкости сферическую форму, если бы не тяжесть. Чем меньше капелька, тем большую роль играют поверхностные силы по сравнению с объемными (тяготением). Поэтому маленькие капельки росы близки по форме к шару. При свободном падении возникает состояние невесомости, и поэтому дождевые капли почти строго шарообразны. Слабый дождик промочил бы нас насквозь. Из-за преломления солнечных лучей в этих каплях возникает радуга. Не будь капли сферическими, не было бы, как показывает теория, и радуги.

Существуют целые виды насекомых мелких и паукообразных, передвигающихся за счет поверхностного натяжения:

1. Муравей, пытающийся напиться из капли росы. Капля «сминается», но сила поверхностного натяжения не дает насекомому проникнуть в нее языком. Это вода, которая не течет, вода, которую трудно пить.

2. Наиболее известны водомерки, которые опираются на воду кончиками лап. Сама же лапка покрыта водоотталкивающим налетом. Поверхностный слой воды прогибается под давлением лапки, но за счет силы поверхностного натяжения водомерка остается на поверхности.

-  Без этих сил мы не могли бы писать чернилами. Обычная ручка не зачерпнула бы чернил из чернильницы, а автоматическая сразу же поставила бы большую кляксу, опорожнив весь свой резервуар;

-  Нельзя было бы намылить руки: пена не образовалась бы;

-  Нарушился бы водный режим почвы, что оказалось бы гибельным для растений;

-  Пострадали бы важные функции нашего организма.

Проявления сил поверхностного натяжения столь многообразны, что даже перечислить их нет никакой возможности. Но почему возникают эти силы, мы обязаны хотя бы кратко рассказать.

Если большая группа индивидуумов наделена свойством притягивать друг друга или индивидуумы по своей воле устремляются друг к другу, то результат будет один: они соберутся в ком, подобный пчелиному рою. Каждый индивидуум «стремится» внутрь этого кома, в результате чего поверхность кома сокращается, приближаясь к сфере. Перед вами модель возникновения поверхностного натяжения.

Молекулы воды (или другой жидкости), притягиваемые друг к другу силами Ван-дер-Ваальса,— это и есть собрание индивидуумов, стремящихся сблизиться. Каждая молекула на поверхности притягивается своими собратьями и потому имеет тенденцию к погружению вглубь как в жидких, так и в твердых телах. Но жидкость, в отличие от твердых тел, текуча из-за перескоков молекул из одного «оседлого» положения в другое. Это позволяет жидкости принимать форму, при которой число молекул на поверхности было бы минимальным, а минимальную поверхность при данном объеме имеет шар. Поверхность жидкости сокращается, и мы воспринимаем это как поверхностное натяжение.

Здесь обнаруживается, что происхождение поверхностных сил совсем иное, чем упругих сил растянутой резиновой пленки. И это действительно так. При сокращении резины упругая сила ослабевает, а силы поверхностного натяжения никак не меняются по мере сокращения поверхности пленки, так как среднее расстояние между молекулами не меняется.

Таким образом, возникновение поверхностных сил нельзя объяснить столь просто и наглядно, как сил упругости, где все связано с изменением расстояний между молекулами. Здесь все сложнее, ибо силы поверхностного натяжения проявляются при сложной перестройке формы всей жидкости без изменения ее объема.

Рассмотрены методы и технические средства сбора нефтепродуктов с поверхности воды. На основе анализа, в том числе и теоретического, с учетом зарубежного опыта обоснован приоритет метода сбора нефти с поверхности небольших акваторий за счет сил поверхностного натяжения, а при аварийных разливах – приоритет метода центробежной сепарации в поле слабых сил.

Нефть и ее продукты в водах поверхностного стока могут находиться в двух состояниях. Первое состояние – эмульсионное, когда двухфазная жидкость представляет собой неоднородную систему, которая состоит из капель воды, распределенных между молекулами нефти или ее продуктов. Размер частиц в эмульсиях составляет10-7 – 10-5 м. Второе состояние – стратифицированная жидкость, независимо от толщины нефти или ее продуктов на поверхности воды.

При эмульсионном состоянии нефти и ее продуктов в воде их выделение наиболее доступно следующими методами:

-  сепарация в поле больших центробежных сил. Метод реализуется на центрифугах и характеризуется возможностью обработки лишь небольших объемов воды и высокими энергозатратами, что не позволяет использовать его при очистке вод поверхностного стока;

-  фильтрование, как на напорных, так и на безнапорных фильтрах.


7. Заключение:

В первой половине XIX века на основе представления о поверхностном натяжении была развита математическая теория капиллярных явлений (П. Лаплас, С. Пуасети, К. Гаусс, А. Ю. Давидов).

В XX веке разрабатывались методы регулирования поверхностного натяжения с помощью ПАВ и электрокапиллярных эффектов (И. Ленгмнор, П. А. Ребиндер, А. Н. Фрумкин).

В настоящее время существует актуальная проблема - развитие молекулярной теории поверхностного натяжения, влияние кривизны поверхности на поверхностное натяжение.

Удивительно разнообразны проявления поверхностного натяжения жидкости в природе и технике. Поверхностное натяжение играет важную роль не только в физиологии нашего организма и нас самих, но и в жизни насекомых.

Пузырь и капля.

Пуская из тростинки пузыри

И видя, как взлетающая пена

Вдруг расцветает пламенем зари,

Малыш на них глядит самозабвенно.

Старик, студент, малыш – любой творит

Из пены майи дивные виденья,

По существу лишенные значенья.

Но через них нам вечный путь открыт,

А он, открывшись, радостней горит.

Герман Гессе. «Игра в бисер».


Библиография

1.  «Удивительная физика», Л. Г. Асламазов, А. А. Варламов, изд.: «Наука», Москва, 1988 г.

2.  Учебник физики для 10 класса средней школы, Н. М. Шахмаев, С. Н. Шахмаев, Д. Ш. Шодиев, изд.: «Просвещение», Москва, 1991 г.


Приложения


Информация о работе «Поверхностное натяжение»
Раздел: Физика
Количество знаков с пробелами: 14747
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
27364
1
11

... равновесия определяется конкурентной адсорбцией на поверхности растворенных компонентов. Связь поверхностного натяжения с адсорбцией Рассмотрим соотношение между адсорбцией и поверхностным натяжением в рамках теории регулярных растворов. Для обсуждения адсорбции растворенного вещества на поверхности жидкость-воздух необходимо определить, что такое поверхность. Первое определение поверхности ...

Скачать
46719
4
21

... , и начинаем отпускать его до момента образования плёнки. Отмечая новую тягу Р2, мы найдём для поверхностного натяжения s значение: . (8)   §3. Определение коэффициента поверхностного натяжения методом компенсации давления Лапласа Молекулы жидкости взаимодействуют между собой силами притяжения и отталкивания, которые проявляются заметно в ...

Скачать
4194
4
0

... 0,428 0,2526   Расчеты по формуле (2) также предполагают 2 этапа исследований. На первом этапе определяется радиус пипетки по стандартному раствору, а на втором - измерение поверхностного натяжения исследуемой пробы. Расчеты по определению радиуса пипетки усложняется поправкой F, которая зависит от V/R3. Трудность состоит в том, что в формуле (2) радиус фигурирует в 2-х местах. Вычислять его ...

Скачать
5295
4
0

усаков, Н.М.Лубман, ЖФХ, 27, вып. 12, стр. 1887, 1953г. Следуя выводам авторов, можно утверждать, что поверхностное натяжение вычисляется следующим образом (см. рисунок):  = d2 g /H, где d - диаметр пузырька;  - плотность исследуемой среды; g - ускорение свободного падения; 1/H - параметр, зависящий от d/2h. Вычисляется с помощью таблицы. В сокращенном ...

0 комментариев


Наверх