Міністерство освіти і науки України

Харківський радіотехнічний технікум

Циклова комісія „Радіотехнічних дисциплін”

ПОЯСНЮВАЛЬНА ЗАПИСКА

до дипломного проекту

 

ДП xxxxxx414 012 000 ПЗ

Виконав:

Керівник:

Студент групи xxxx

ХАРКІВ 2008р.


ЗАЛІКОВИЙ ЛИСТ

ХАРКІВСЬКИЙ РАДІОТЕХНІЧНИЙ ТЕХНІКУМ

 

Циклова комісія „РАДІОТЕХНІЧНИХ ДИСЦИПЛІН”

Спеціальність xxxxxx„Конструювання, виробництво і технічне обслуговування радіотехнічних пристроїв”

Курс – 4

Група – xxxxx

Семестр – 7

Курсовий проект

Студента Xxxxxxа xxxxxxx xxxxxxxx

на тему: “Таймер-регулятор потужності”

ДОПУЩЕНИЙ ДО ЗАХИСТУ

ОЦІНКА________________

Заступник директора з навчальної роботи

Голова циклової комісії

Керівник проекту xx.Xxxxxx

Консультант економічного розділу xxxx

Консультант з охорони праці xxxxxxx

Протокол № від „__”_____________2008 року


МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

ХАРКІВСЬКИЙ РАДІОТЕХНІЧНИЙ ТЕХНІКУМ

Циклова комісія РАДІОТЕХНІЧНИХ ДИСЦИПЛІН „ЗАТВЕРДЖУЮ”

Спеціальність xxxxxxКонструювання, Зав. Відділення

виробництво і технічне обслуговування xxxxxxx

радіотехнічних пристроїв. «___»__________2008р.

ЗАВДАННЯ

На дипломний проект

Тема проекту: “Розробка конструкції та техніко-економічне обґрунтування таймера-регулятора потужності”

Основні технічні данні: Розробити таймер-регулятор потужності. Розрахувати стабілізатор постійної напруги з випрямлячем:

Вихідна напруга Uвих. = 12.5±0.5 В

Коефіцієнт стабілізації Кст = 200

Пульсації вихідної напруги U~m вих. = 0,006 В

Робоча температура Т = 25±10ºC

Живлення від мережі f = 50 Гц, напруга мережі Uвх. = 220В±10%

1. До складу пояснювальної записки повинні входити:

Вступ

1. Огляд аналогічних пристроїв

2. Вибір та обґрунтування проектованого пристрою

3. Розрахункова частина

4. Конструкторсько-технологічна частина

5. Розрахунок надійності

6. Охорона праці та навколишнього середовища

7. Технічне обслуговування та ремонт проектованого пристрою

8. Економічна частина

Висновки Перелік посилань

3. Графічна частина повинна включати:

- схему електричну принципову – ф. А1;

- креслення друкованої плати – ф. А1;

- складальне креслення друкованої плати – ф. А1;

- схему електричну структурну;

- алгоритм пошуку несправностей.

Дата видачі завдання : „21” квітня 2008р.

Дата здачі виконаної роботи: „18” червня 2008р.

Керівник курсового проекту

Протокол № 100 від „28” березня 2008 року


ЗМІСТ

Вступ

1. Огляд аналогічних пристроїв

2. Вибір та обґрунтування проектованого пристрою

3. Розрахункова частина

4. Конструкторсько-технологічна частина

5. Розрахунок надійності

6. Охорона праці та навколишнього середовища

7. Технічне обслуговування та ремонт проектованого пристрою

8. Економічна частина

Висновки

Перелік посилань

Додатки

Додаток А - перелік елементів до схеми електричної принципової

Додаток Б - специфікація до креслення складального


ВСТУП

У наш час наука і техніка не стоять на місці. З’являється одна технологія - не проходить і року, як з'являється інша. Ще більш ефективна , але вона складніша, а це означає, що і дорожча. Щоб конструкція та схема була простіше, наука йде далі.

І якщо поглянемо на ті ж телевізори, що з’явилися в минулому столітті, то можно побачити, що основна схема була побудована на лампах, а вага таких телевізорів була велика(десь 40-50 кг). Зараз ці ж телевізори легкі, а керувати ними (перемикати канали) можно не встаючи з крісла. Щоб користування телевізором було простіше, був розроблений пристрій регулювання.

Пристрої регулювання теж пройшли великий шлях в своєму розвитку. З початку це були механічні перемикачі. Далі з’явилися реле – це ті ж перемикачі, але спрацьовували вони вже без людини. Зараз вже є цілі схеми чи блок схем, у якому все працює автоматично, тільки треба задати певні параметри. Також є пристрої регулювання з таймером.

Один з них я вибрав в цьому проекті. Пристрій призначений для регулювання робочої температури електропечей, електроплит і інших подібних навантажень з великою тепловою інерцією. Але він може виконувати і інші функції – періодично з певною частотою і дірчатістю вмикати-вимикати світлову рекламу, світлові ліхтарики чи звукову сигналізацію.

Розробка регулятора потужності з таймером являється актуальною темою.


1 ОГЛЯД АНАЛОГІЧНИХ ПРИСТРОЇВ

Симісторний регулятор потужності.

Застосування симіторів у регуляторах потужності та в різноманітних автоматичних комутаторах утруднене із-за необхідності забезпечення порівняно великого струму управляючого електроду - 150 мА для симісторів серії КУ 208. Управління симістором постійним струмом вимагає великої потужності, а при імпульсному управлінні необхідний формувач, що забезпечує короткі імпульси в момент проходження мережевої напруги через «нуль» і загальний вивід, спільний з одним з мережевих провідників.

Простий регулятор, що не створює шуму.

Цей триністорний регулятор відноситься до пристроїв, в яких комутація триристорів відбувається в моменти переходу мережевої напруги через «нуль», а потужність регулюється зміною числа напівперіодів напруги, що підводиться до навантаження.


2 ВИБІР ТА ОБГРУНТУВАННЯ ПРОЕКТОВАНОГО ПРИСТРОЮ

Згідно ТЗ та на основі огляду аналогічних пристроїв таких, як симісторні регулятори потужності та регулятор потужності, не виробляючий шумів, я вибрав Таймер-регулятор потужності. Вибір цього пристрою обумовлений тим, що він відрізняється схемним рішенням вузла синхронізації з мережею; наявністю допоміжного таймера, формуючого імпульси з регулюючим, але залишаючись суворо кратним періоду напруги в мережі, періодом повторення. Час відновлення таймера після закінчення імпульсу значно зменшено за рахунок введення до кола розрядки часозадавального конденсатора додаткового польового транзистора. Вихідним симістором керує спеціалізований оптосимістор, що включає його строго в моменти близькості до нуля миттєвого значення мережевої напруги.

Схема таймера-регулятора зображена на рисунку 1.1. Вузол синхронізації таймера з мережею виконаний на здвоєному транзисторному оптроні SU1 і транзисторі VT3. Струм випромінюючих діодів оптрона обмежений резистором R5, від номіналу якого залежить мінімальна напруга в мережі, при якій вузол синхронізації ще працює. При вказаному на схемі номіналі - це 140 В.

Завдяки зустрічно-паралельному з'єднанню випромінюючих діодів: один з фоторезисторів оптрона SU1 відкритий в позитивних напівперіодах мережевої напруги, інший - в негативних. В результаті на “стиках” напівперіодів, коли відсутній струм через обидва випромінюючі діоди і закриті обидва фототранзистори, на колекторі транзистора VT3 утворюють імпульси тривалістю близько 0,1 мс. При необхідності їх тривалість можна змінити, підбираючи резистор R9.

Сформовані описаним чином синхроімпульси поступають на вивід 5 таймера DA1 і запускають зібраний на ньому одновібратор. Чутливість таймера до запускаючих імпульсів залежить від напруги на його виводі 2, заданого резистивним дільником R1R2. Конденсатор С1 подавляє імпульсні перешкоди і наводки.

Зарядка часозадавального конденсатора (залежно від положення перемикача SA1- це С2 або С3) йде по лінійному закону завдяки стабілізатору струму, зібраного на транзисторі VT1. Напругу на базі цього транзистора задано резисторами R3 і R4. Значення струму стабілізації залежить від сумарного опору постійного резистора R6 і змінного R7 в колі емітера транзистора. По закінченню сформованого одновібратором імпульсу черговий синхроімпульс запускає одновібратор повторно. Тому період повторення його імпульсів завжди рівний цілому числу напівперіодів мережевої напруги.

Для достатньо швидкої розрядки часозадавального конденсатора великої ємності (С3) можливостей внутрішнього транзистора таймера DD1 не вистачає. Більш того, при ємності конденсатора більш 22мкФ цей транзистор може вийти з ладу. З цих причин в одновібратор доданий р-канальний польовий транзистор VT2 з опором відкритого каналу не більше 0,175 Ом при струмі 11 А. Це дозволило з кроком в 10мс регулювати період повторення імпульсів одновібратора від мінімального (10мс) до декількох десятих секунди.

Логічні елементи DD2.1 і DD2.2 формують з імпульсів одновібратора і мережевих синхроімпульсів короткі одиночні імпульси з регульованим періодом повторення, які поступають на вхід лічильника DD3. Спільно з RS-тригером на елементах DD2.3 і DD2.4 лічильник служить генератором імпульсів з періодом повторення вдесятеро більшим від періоду повторення імпульсів одновібратора.

Високий рівень, встановлений в одному з кожних десяти тактів роботи лічильника на його вив. 3, переводить RS-тригер в стан з високим рівнем на виході елементу DD2.4. Через декілька тактів, число яких залежить від положення перемикача SA2, високим рівнем на виході (вив.6) елементу DD2.4 тригер буде знову в стані з низьким рівнем на виході.

Імпульси, сформовані тригером, подані на базу транзистора VT7, що служить підсилювачем їх потужності. У коло колектора цього транзистора включено послідовно випромінюючий діод симісторного оптрона SU2, сигнальний світлодіод HL1 (він дозволяє візуально контролювати роботу приладу при відключеному або недоступному для спостереження навантаженню) і резистор R19, що обмежує струм.

Оптрон МОС3083 відрізняється від звичайних тим, що містить внутрішній вузол, що забезпечує відкриття його фотосимістора в моменти переходу прикладеної до нього змінної напруги через нуль, так що в ці ж моменти відкривається і потужний симістор VS1, включений в коло навантаження. Цим забезпечений низький рівень імпульсних перешкод, що створюються таймером-регулятором в мережі живляння. Диференцируюче коло C9R22 захищає симістор від відкриття кидками мережевої напруги.

Перемикач SA2 дозволяє змінити коефіцієнт заповнення (відношення тривалості до періоду повторення) імпульсів струму, що проходить через випромінюючий діод оптрона SU2 десятьма ступенями по 10 %. Такими ж ступенями змінюється і потужність, що виділяється на навантаженні. У нижньому (по схемі) положенні перемикача на виході елементу DD2.4 встановлений високий постійний рівень, що відповідає безперервно включеному навантаженню.

Змінюючи тривалість циклу регулювання потужності змінним резистором R7, можна встановити її оптимальною для конкретного навантаження. Якщо навантаженням служать лампи розжарювання, вдається спостерігати цікаві світлові ефекти.


3 РОЗРАХУНКОВА ЧАСТИНА

 

3.1 Розрахунок стабілізатора напруги на трьох транзисторах

Згідно до завдання на ДП необхідно розрахувати стабілізатор постійної напруги (рисунок 3.1)

Рисунок 3.1 - Схема електрична принципова стабілізатора на трьох транзисторах

Дані для розрахунку

1 Напруга на виході стабілізатора

Uвих. = 12.5 ±0,5 В

2 Нестабільність напруги на виході стабілізатора

Рст. вих. = 0,0005


3 Напруга на виході мережі

Uвх. = 220 ±10% В з частотою f = 50 Гц

4 Нестабільність напруги мережі

Рст. вх = 0,1

5 Необхідний коефіцієнт стабілізації

Кст = Рст. вх. / Рст. вих.  (3.1.1)

Кст = 0.1/0.0005 = 200

6 Пульсації на виході

U~m вих. = 0,006 В

Кп вих. = (U~m вих. / Uвих.)•100% (3.1.2)

Кп вих. = (0.006/12.5)•100% = 0.048 %

7 Робоча температура

Тmax = 35ºC

Tmin = 15ºC

∆T = 20ºC

1 Розрахунок регулюючого транзистора

1.1 Максимальний струм регулюючого транзистора

Ік max = Ін max = 1А

Беремо транзистор КТ814В з параметрами:

Uке = 65 В

Uке min = 3 В

Ін max = 12А

Ік обр. = 0.015 А

Рк доп. = 1.5 Вт

h21е min = 40 при Ік = 1А

Rtк = 1ºС / Вт

Тк max = 80ºC

1.2 Амплітуда пульсацій на вході стабілізатора

U~m вх. = (0.05÷0.1)•( Uвих. max + Uкэ min) (3.1.3) U~m вх. = 0.07•(13 + 3) = 1.12 В

1.3 Мінімальна напруга на вході стабілітрона

Uo min = Uвих. max + Uкэ min + U~m вх. (3.1.4)

Uo min = 13 + 3 + 1.12 = 17.2 В

1.4 Номінальна напруга на вході стабілізатора

Uон = Uo min / (1 - Рст. вх)  (3.1.5) Uон = 17.2 / (1 - 0.1) = 19 В

1.5 Коефіцієнт згладжування

q = Кп вх. / Кп вих  (3.1.6)

q = 5.9 / 0.048 = 123 < Кст = 200,

де Кп вх. = (U~m вх. / Uон)•100% (3.1.7)

Кп вх. = (1.12 / 19) • 100% = 5.9%

1.6 Максимальна напруга на вході стабілізатора

Uо max = Uон • (1 + Рст. Вх) (3.1.8)

Uо max = 19 • (1 + 0.1) = 20.9 В

1.7 Величина внутрішнього динамічного опору випрямляча

Riв = (0.05÷0.15)• Uон / Ік max (3.1.9)

Riв = 0.1 • 19 / 1 = 1.9 Ом

1.8 Максимальна напруга на вході стабілізатора (при максимальному струмі навантаження)

Uо max max = Uо max + Riв •( Ін max – Iн min) (3.1.10)

Uо max max = 20.9 + 1.9 •(1 – 0.5) = 21.85 В

1.9 Максимальна напруга між колектором та емітером

Uке max = Uо max max - Uвих. min (3.1.11)

Uке max = 21.85 – 12 = 9.85 В

1.10 Максимальна потужність розсіювання на транзисторі

Рк max = Uке max • Ік max (3.1.12)

Рк max = 9.85•1 = 9.85 Вт > Рк доп. = 1.5 Вт

1.11 Площа тепловідводу транзистора


Sт = Рк max / Kт •( Тк max - Тmax - Рк max • Rtк) (3.1.13)

Sт = 9.85 / 0.0016•(80 - 35 - 9.85•1) = 9.85 / 0.0016•35.15 = 9.85 / 0.05624 = 175 мм² = 1.75 см²

1.12 Максимальний струм емітера регулюючого транзистора

Іе max = Ік max + Ік max / h21е min  (3.1.14)

Іе max = 1 + 1 / 40 = 1.025 А

1.13 Максимальний струм бази регулюючого транзистора

Іб max = Іе max / h21е min  (3.1.15) Іб max = 1.025 / 40 = 0.0256 А

1.14 Шукаємо транзистор по величині струму

Ік2 = 1.1• Іб max (3.1.16)

Ік2 = 1.1 • 0.0256 = 0.2816 А

По струму Ік2 беремо транзистор П601БИ з параметрами

Uке max = 30 В

Ік max = 0.5 А

Рк доп. = 0.5 Вт

h21е min” = 80 при Ік = 0.5А

Іб2 = Іе max / h21е min•h21е min” = 1.025 / 40•80 = 0.00032 А < 0.0005 А

1.15 Величина опору автозміщення Rб транзистора П601БИ

ІRб = (1 ÷ 1.5)•Ік обр. (3.1.17)

ІRб = 1.2•0.015 = 0.018 А

Rб = Uвих. min / ІRб (3.1.18)

Rб = 12 / 0.018 = 670 Ом

Потужність на опорі

РRб = (ІRб)²•Rб (3.1.19)

РRб = (0.018)²•680 = 0,254 Вт

Беремо опір типу С2-23- 0.5 – 680 Ом

1.16 Потужність на транзисторі П601БИ

Рк2 = Рк max•Ік2 (3.1.20)

Рк2 = 9.85•0.028 = 0.278 Вт < Рк доп. = 0.5 Вт

2 Розрахунок пристрою порівняння та ППС

2.1 Величина еталонної напруги

Uоп. < Uвих. min – (2 ÷ 3)В (3.1.21)

Uоп. < 12 – 2 = 10 В

Іоп. cт. min > 5•Ібн (3.1.22)

Іоп. cт. min > 5•0,0004 = 0,002 А

Беремо стабілітрон типу Д810 з параметрами

Uст н = 10 В

Uст min = 9 В

Uст max = 10.5 В

Іст min = 0.002 А

Іст max = 0.026 А

αст 0.058 при Т = -20 ÷ +20ºС

Rдин = 12 Ом при Іст = 0,005 А


2.2 Величина струму та напруги колектора транзистора

Іку ≥ 8•Ібн (3.1.23)

Іку ≥ 8•0.0004 = 0.0032 A

Uк = Uвих. max - Uст min (3.1.24)

Uк = 13 – 9 = 4 В

Беремо транзистор КТ342Б з параметрами:

Uке дод. = 20 В

Ік max = 0.02 A

Pк дод. = 0.15 Вт

h21е min = 50

2.3 Струм бази транзистора ППС

Uк = Uвих. max - Uст min (3.1.25)

Uк = 13 – 9 = 4 В

2.4 Вхідний опір транзистора ППС

Rвх. ппс = 1 / (25÷35)•Іку (3.1.26)

Rвх. ппс = 1 / 25•0,0032 = 12,5 Ом

2.5 Величина опору Rг2

Rг2 = Uвих. min - Uст max / Іст min + Іку  (3.1.27)

Rг2 = 12 – 10.5 / 0.002 + 0.0032 = 290 Ом

Потужність розсіювання на ньому

Рг2 = (Іст min + Іку)²•Rг2 (3.1.28) Рг2 = 0.00002704•290 = 0.00784 Вт

Беремо резистор С2-23-0.125-320

2.6 Максимальний струм скрізь стабілітрон

Іст max =((Uвих.max – Uст min) / Rг2) + Іку (3.1.29)

Іст max = ((13 -9) / 320) + 0.0032 = 0.0157А = 15.7 мА < Іст max = 26 мА

2.7 Величина струму у опірному дільнику

Іділ >> Іб ппс = 30•0.000064 = 0.002А (3.1.30)

2.8 Опір резистивного дільника

Rділ = Uвих. min / Іділ  (3.1.31)

Rділ = 12 / 0.002 = 6.25 кОм

2.9 Коефіцієнт зворотного зв’язку дільника

Кз.в. min = Uст min / Uвих. max (3.1.32)

Кз.в. min = 9 / 13 = 0.69

Кз.в. = Uст н / Uвих. (3.1.33)

Кз.в. = 10 / 12.5 = 0.8

Кз.в. max = Uст max / Uвих. min  (3.1.34)

Кз.в. max = 10.5 / 12 = 0.875

2.10 Величина опорів R1 та R3 дільника

R1 ≤ (1 - Кз.в. max )•Rділ (3.1.35)

R1 ≤ 0.125•6000 = 750 Ом

РR1 = (Іділ)²•R1 (3.1.36)

РR1 = 0.000004•750 = 0.003 Вт

Беремо резистор С2-23-0.125-750

R3 ≤ Кз.в. min•Rділ (3.1.37)

R3 ≤ 0.69•6000 = 4100

РR3 = (Іділ)²•R3 (3.1.38)

РR3 = 0.000004•4000 = 0.016 Вт

Беремо резистор С2-23-0.125-4.3к±10%

2.11 Опір змінного резистора R2

R2 ≥ Rділ - R1 - R3 (3.1.39)

R2 ≥ 6000 – 750 – 4300 = 950 Ом

Беремо резистор СП2-2а-1.3к

2.12 Максимальний ККД

ή = Uвих. max •Ін max / Uо max•Ік max (3.1.40)

ή = 13•1 / 20.9•1 = 0.622

2.13 Основний коефіцієнт стабілізації

Кст. осн = (Кз.в. / Rвх. ппс)•(Rк.с / А)•( Uвих. / Uон) , де (3.1.41)

а) 1/ Rк.с = (Rк1+Rк2) / Rк1•Rк2 = (240000 + 30000) / 72•100000000

Rк1 = R1к•h21е min” = 3000•80 = 240000 Ом

Rк2 = 30000 Ом (для транзистора П601БИ)

Rк.с = 720000 / 27 = 26.7 •1000 Ом

б) А = 1 + (Rділ •(1 - Кз.в.)•Кз.в. / h21е min ) / Rвх. ппс = 1 + (6000•0.2•0.8/50)/ 12.5 = 1 + 1.536 = 2.536

Кст. осн = 0.8•26700•12.5 / 12.5•2.536•19 = 267000 / 602.3 = 443.3

2.14 Коефіцієнт стабілізації

Кст. = Кст. осн = 443.3 > 200 (3.1.42)

2.15 Фактичний коефіцієнт пульсацій та амплітуда на виході стабілізатора

Кп. вих. = Кп. вх. / Кст. (3.1.43)

Кп. вих. = 5.9 / 443.3 = 0.0133 %

U~m вих. = Кп. вих.•Uоп. (3.1.44)

U~m вих. = 0.000133•10 = 0.00133 =1.33 мВ

3.2 Розрахунок випрямляча з фільтром

Згідно до завдання на ДП необхідно розрахувати випрямляч з фільтром (рисунок 3.2)

Рисунок 3.2 - Схема електрична принципова випрямляча з фільтром

Дані для розрахунку

1 Напруга в навантаженні

Uо = 19 В

2 Струм навантаження

Iо = 0,5 А

3 Коефіцієнт пульсацій напруги в навантаженні

Кп = 5,9 % = 0,059

4 Напруга і частота живлячої мережі

Uмер. = 220 В з f = 50 Гц

Розрахунок

1.Потужність нагрузки:

Ро = Io • Uо (3.2.1)

Ро = 0,5 • 19 = 9,5 Вт

2. Падіння напруги на дроселі

Uдр = 0,15 Uо (3.2.2)

Uдр = 2,85 В

3 Постійна напруга на вході згладжуючого випрямляча

Uпост = Uо + Uдр (3.2.3)

Uпост = 19 + 2,85 = 21,85 В

4 Обираємо однофазну мостову схему.

Визначаємо активний опір трансформатора

Rтр = Kr • Uпост • a / Io • f • Bm (3.2.4)

де a = = 2,53

Kr = 3,5 Bm = 1,4 Тл

S = 1

Rтр = 3,5 • 21,85 • 2,53 / 0,5 • 50 • 1,4 = 5,53 Ом

5 Обираємо тип вентилю

Іов = 0,5Iо  (3.2.5)

Іов = 0,25 А

Iтв = 0,5F • Iо (3.2.6)

Iтв = 0,5 • 6 • 0,5 = 1,5 А

Uобр = 1,41В • Uпост  (3.2.7)

Uобр = 1,41 • 21,85 = 30,8 В

де В = 1

F = 6

Обираємо вентиль типу Д214 (4 шт.) з параметрами:

Uобр = 100 В

Іов макс = 2 А

Середня пряма напруга Uпр ≤ 1 В

6 Внутрішній опір вентилю

Ri = Uпр / 3 Іов  (3.2.8)

Ri = 1 / 3 • 0,75 = 1,33 Ом

7 Повний активний опір фази вентилю

Rв = Rтр + 2Ri (3.2.9)

Rв = 5,53 + 2,66 = 8,2 Ом


8 Індуктивність дроселя трансформатора

Ls = KL • S • Uпост / Io • f • Bm • a  (3.2.10)

Ls = 0,005•1•21,85 / 0,5•50•1,4•2,53 = 0,0012 Гн

де KL = 0,005

9 Величина розрахункового параметра

А = П • Io • Rв / m • Uпост (3.2.11)

А = 3,14•0,5•8,2 / 2•21,85 = 0,29

10 Кут зсуву фаз за рахунок Ls

£ = arctg(2П•f• Ls / Rв)  (3.2.12)

£ = arctg 0,0459 = 3°

В = 1,09

D = 2,17

F = 6

H = 600

11 Визначимо величини необхідні для розрахунку трансформатора

U2 = B•Uпост  (3.2.13)

U2 = 1,09•21,85 = 23,82 В

I2 = 0,707• D•Io  (3.2.14)

I2 = 0,707 • 2,17• 0,5 = 0,77 А

I1 = Kтр • I2 (3.2.15)

I1 = 0,07 А


де Kтр = U2 / U1 = 0,108

Ртип = 0,707 • В • D • Io • Uпост  (3.2.16)

Ртип = 0,707•1,09•2,17•0,5•21,85 = 18,27 В•А


Информация о работе «Розробка конструкції та техніко-економічне обґрунтування таймера-регулятора потужності»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 96681
Количество таблиц: 7
Количество изображений: 4

Похожие работы

Скачать
87099
23
3

... або до безпечної зниженої швидкості. Може використовуватися без датчика швидкості двигуна. 3 рівень Нижчий рівень або палевої, використовуються периферійні засоби контролю, регулювання технологічного процесу лінії пакування гипсокартону. Опис використовуваних технічних засобів Штапельний стіл (конвеєр з функцією підйому). Привод №01 4.0 kW 8,2 А Частотний перетворювач VLT 5008 6,0 kW 01) Y ...

Скачать
199387
21
11

... , звитих в плоскі спіралі. Кінці спіралей приварені до трьох роздаючих і до трьох колекторних труб. 2. Призначення, склад, технічні характеристики системи автоматичного регулювання 2.1 Призначення системи автоматичного регулювання Система автоматичного регулювання (САР) турбіни виконується електрогідравлічною і структурно складається з електричної і гідравлічної частин, робота яких взає ...

Скачать
165224
11
6

... Знайдемо потужність променевого опалення для всіх 5 виробничих цехів депо, яка дорівнює їхній сумі. Рн=165,88+148,26+176,9+132,24+71,34=694,62кВт 7. ТЕХНІКО-ЕКОНОМІЧНІ РОЗРАХУНКИ ЗА РАХУНОК ЕНЕРГОЗБЕРІГАЮЧИХ ЗАХОДІВ 7.1 Розрахунок економічної доцільності переводу парового котла на водогрійний режим Перелік матеріалів та обладнання, необхідних для переводу парового котла типу ...

Скачать
147788
20
31

... Вологість дошки в точці 2 Аналоговий % 5…100 – 4. Функціональна структура системи управління   Функціональна схема автоматизації є основним документом, який визначає функціонально-блокову організацію структури керування. Для процесу вакуумної сушки деревини функціональна схема приведена в графічній частині проекту (лист 6). Система складається з лісосушильної камери, вентиляторів, насос ...

0 комментариев


Наверх