1.4 Вибір корпуса інтегральної мікросхеми

Для гібридних мікросхем найчастіше використовують три види корпусів – металоскляний квадратний чи прямокутний, металоскляний циліндричний [4].

В залежності від конструкції і матеріалу корпуси мікросхем герметизують різними методами. Так, наприклад, металосклянні і металокерамічні герметизують сваркою або пайкою, керамічні – пайкою, а пластмасові – вакуумною заливкою, листовим пресуванням або склеюванням.

Головна перевага металоскляного корпусу це забезпечення надійної роботи мікросхеми в умовах підвищеної вологості і в широкому температурному інтервалі.

В металоскляних корпусах кришка і частково дно формуються з металу. На дні знаходиться скляна пластина, в яку впаяно виводи. Кришка і дно з’єднуються по периметру за допомогою сварки.

Температурні коефіцієнти лінійного розширення скляної пластини (основи) і виводів повинні бути найближчими, інакше при нагрівані корпусу це може призвести до порушення герметичності між виводами і скляною пластиною і навіть до руйнування скла. Тому при проектуванні і виготовленні металоскляних корпусів на підбір цих коефіцієнтів приділяють велику увагу [4].

Найчастіше для виготовлення корпусів використовують сплави ТКР-29НК, 29НК-В4; сталь Х18Н10Т; скло С48-2, С52-1

1.5 Переваги і недоліки гібридних інтегральних мікросхем

Переваги:

1.  Гібридна технологія дозволяє відносно швидко створювати електронні прилади, які виконують достатньо складні функції.

2.  Обладнання для виготовлення гібридної інтегральної мікросхеми значно дешевше ніж для виготовлення напівпровідникових інтегральних мікросхем.

3.  Перевагою гібридних технологій є більший відсоток виходу працездатних мікросхем 60-80%, порівняно з 5-30% для напівпровідникових інтегральних мікросхем. Брак, який виникає при виготовленні гібридних інтегральних мікросхем часто можна усунути.

4.  Підладка гібридної інтегральної мікросхеми виготовлена з високоякісного діелектричного матеріалу, тому через малі паразитні ємності і гарну взаємну ізоляцію елементів і компонентів, гібридні інтегральні мікросхеми мають кращі високочастотні і імпульсні електричні властивості, тому у високочастотному і надвисокочастотному діапазоні переважно використовуються гібридні інтегральні мікросхеми [5].

Гібридні інтегральні мікросхеми мають вищу радіаційну стійкість.

Недоліки:

1.  Мала надійність, через те, що використовується навісний монтаж.

2.  Більші габарити і вага.

Неможливість отримання активних елементів в єдиному технологічному циклі з пасивними [5].

1.6. Технології виробництва ГІМС

Напівпровідникова мікросхема — це така мікросхема, де всі елементи і між елементні з'єднання виконані на одному напівпровідниковому кристалі (наприклад, кремнію, германія, арсеніду галію).

- Товсто-плівкова інтегральна схема;

- Тонко-плівкова інтегральна схема.

Гібридна мікросхема — крім напівпровідникового кристалу містить деяку кількість безкорпусних діодів, транзисторів й інших електронних компонентів, поміщених в один корпус.

Вид оброблюваного сигналу:

- Аналогові

- Цифрові

- Аналого-цифрові

Аналогові мікросхеми — вхідні і вихідні сигнали змінюються за законом безупинної функції в діапазоні від позитивного до негативної напруги живлення [5].

Цифрові мікросхеми — вхідні і вихідні сигнали можуть мати два значення: логічний чи нуль логічна одиниця, кожному з який відповідає визначений діапазон напруги. Наприклад, для мікросхем ТТЛ-логіки при живленні +5 В діапазон напруги від 0 до 0,8 В відповідає логічному нулю, а діапазон від 2,4 до 5 В відповідає логічній одиниці. Для мікросхем ЕСЛ-логіки при живленні 5,2 В: логічна одиниця — це 0,8 - 1,03 В, а логічний нуль — це 1,6 - 1,75 В.

Аналого-цифрові мікросхеми сполучають у собі форми цифрової й аналогової обробки сигналів. В міру розвитку технологій одержують усе більше поширення.

Основним елементом аналогових мікросхем є транзистори (біполярні чи польові). Різниця в технології виготовлення транзисторів істотно впливає на характеристики мікросхем. Тому нерідко в описі мікросхеми вказують технологію виготовлення, щоб підкреслити тим самим загальну характеристику властивостей і можливостей мікросхеми. У сучасних технологіях поєднують технології біполярних і польових транзисторів, щоб досягти поліпшення характеристик мікросхем [5].

- Мікросхеми на уніполярних (польових) транзисторах — найбільш економічні (по споживанню струму):

- КМОП-логіка (комплементарна МОП-логіка) — кожен логічний елемент мікросхеми складається з пари взаємодоповнюючих (комплементарних) польових транзисторів (n-МОП і p-МОП).

Мікросхеми на біполярних транзисторах:

- РТЛ — резисторно-транзисторна логіка (застаріла, замінена на ТТЛ);

- ДТЛ — діод-транзисторна логіка (застаріла, замінена на ТТЛ);

- ТТЛ — транзисторно-транзисторна логіка — мікросхеми зроблені з біполярних транзисторів із багато-емітерними транзисторами на вході;

- ТТЛШ — транзисторно-транзисторна логіка з діодами Шотки — удосконалена ТТЛ, у якій використовуються біполярні транзистори з ефектом Шотки.

- ЕСЛ — еміттерно-звязана логіка — на біполярних транзисторах, режим роботи яких підібраний так, щоб вони не входили в режим насичення, — що істотно підвищує швидкодію.

КМОП і ТТЛ (ТТЛШ) технології є найбільш поширеними логіками мікросхем. Де небхідно заощаджувати споживання струму, застосовують КМОП-технологію, де важливіше швидкість і не потрібно економія споживаної потужності застосовують ТТЛ-технологію. Слабким місцем КМОП-мікросхем є уразливість від статичної електрики — досить торкнутися рукою висновку мікросхеми і її цілісність уже не гарантується. З розвитком технологій ТТЛ і КМОП мікросхеми по параметрах зближаються і як наслідок, наприклад, серія мікросхем 1564 — зроблена за технологією КМОП, а функціональність і розміщення в корпусі як у ТТЛ технології [5].

Мікросхеми, виготовлені по ЕСЛ-технології є найшвидшими, але найбільш енергоспоживаючими і застосовувалася при виробництві обчислювальної техніки, коли найважливішим параметром була швидкість обчислення. У СРСР самі продуктивні ЕОМ типу ЄС106х виготовлялися на

ЕСЛ-мікросхемах. Зараз ця технологія використовується рідко [5].

Очищення підкладок перед напилюванням виконують для видалення механічних і жирових забруднень. Очищення проводять на двох взаємопов'язаних напівавтоматах вібраційного хімічного очищення, камери яких заповнюють розчином перекису водню. Підкладки поміщають у касету і завантажують у центрифугу, де вони очищуються від механічних домішок. Потім підкладки перекладають в робочу камеру напівавтомата для промивання. На другому напівавтоматі відбувається очищення підкладок у перекисно-аміачному розчині та їх промивання після очищення.

Напилювання резистивного шару виконують іоноплазмовим методом, який має такі переваги у порівнянні з методом термічного випаровування у вакуумі: можливість автоматизації процесу напилювання; відсутність наважок; тривалий термін служби мішені; високе відтворення тонкоплівкових резисторів, а також високі електрофізичні властивості напилених шарів; підвищена адгезія напиленого шару з підкладкою [5].

Сутність процесу напилювання електропровідних шарів (ванадій-мідь і ванадій-алюміній) полягає в осадженні на підкладку атомів вихідного матеріалу, що випаровуються в результаті впливу високої температури й електричного поля. Напилювання ведеться на установці "УВН-2-М2" у два етапи: на першому етапі проводиться напилювання шару з ванадію; на другому - напилювання провідного шару з міді чи алюмінію.

Виготовлення й очищення наважок, застосовуваних для напилювання провідних шарів, проводиться на спеціально обладнаному робочому місці. Розчини для очищення наважок (для ванадія, міді і алюмінію, обробленого в лузі, - розчин азотної кислоти в деіонізованій воді, для алюмінію - розчин гідрату окису калію в деіонізованій воді) готують оператори. Саме очищення ведеться у витяжній шафі занурюванням у ванну з фторопласта, армованого титановою сіткою [5].

Завдяки простоті, гнучкості і постійному удосконаленню технологія

Товсто-плівкових мікросхем усе ширше застосовується у виробництві. Із застосуванням електронно-обчислювальних машин і створенням гнучких автоматизованих систем виробництва, переходом до безлюдного виробництва досягається вивільнення значної кількості робочих місць, поліпшення умов праці і підвищення культури виробництва.

У вітчизняній практиці використовуються автоматизовані комплекси, побудовані на агрегатно-модульному принципі. Кожний автоматизований модуль оснащений завантажувально-розвантажувальними пристроями. Устаткування, об'єднане в комплекс, дозволяє виготовляти 600 мікрозборок за 1 годину. Технологічне устаткування, що легко вбудовується в автомати-чні лінії: автомати трафаретного друку, лазерної підгонки і контролю, роботизовані робочі місця для укладання електрорадіоелементів на підкладки, автоматичні завантажувально-розвантажувальні пристрої, успішно застосовується при виготовленні гібридних інтегральних мікросхем невеликими партіями, а за необхідності його легко перебудувати на випуск нових виробів. Тому технологію товсто-плівкових мікросхем і мікрозборок застосовують для дрібносерійних і дослідних партій [5].


Розділ 2. Розробка конструкторської документації ГІМС


Информация о работе «Розробка і оформлення конструкторської документації гібридних інтегральних мікросхем»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 43904
Количество таблиц: 4
Количество изображений: 6

Похожие работы

Скачать
142838
20
5

... і, нарешті, крипторотоколу. Це все було зроблено для того, щоб полегшати формалізування опису протоколів для доказування їхньої стійкості. Розділ 3. Оцінка стійкості криптографічних протоколів на основі імовірнісних моделей 3.1. Методика оцінки стійкості Формальний доказ стійкості в рамках обчислювальної моделі складається з трьох етапів. 1. Формальна поведінка учасників протоколу і ...

Скачать
164335
52
0

... і функції, тобто вимірювати відхилення швидкості магнітної стрічки та коефіцієнт детонації у відповідних умовах експлуатації протягом досить тривалого часу. В конструкції максимально використані стандартні і нормалізовані вироби. Детонометр має невеликі габаритні розміри, споживає малу кількість електроенергії. Прилад простий і зручний в експлуатації. Вступ Бурхливий розвиток науки і техніки на ...

Скачать
191192
6
39

... принтера також містить різні мови опису даних (Adobe PostScript, PCL і тощо.). Ці мови знову ж таки призначені для того, щоб забрати частину роботи у комп'ютера і передати її принтеру. Розглянемо фізичний принцип дії окремих компонентів лазерного принтера. 2.5.29 Фотобарабан Як вже писалося вище, найважливішим конструктивним елементом лазерного принтера є фотобарабан, що обертається, за ...

0 комментариев


Наверх