4. ВЫБОР СТРУКТУРНОЙ СХЕМЫ

Можно оценить требующееся число каскадов предварительного усиления, которые должны обеспечить коэффициент усиления по напряжению:

.

Коэффициент усиления, требуемый от одного каскада

.

Таким образом, предварительный усилитель будет содержать 2 каскада, построенные по схеме с общим эмиттером. Предоконечный каскад охватим отрицательной обратной связью по току для уменьшения коэффициента усиления по току. Структурная схема усилителя представлена на рис.3.

Рис 3. Структурная схема усилителя.

5. РАСЧЕТ ПРЕДОКОНЕЧНОГО КАСКАДА

Схема каскада представлена в приложении А (ОЭ2). Параметры нагрузки (входные параметры выходного каскада и напряжение питания), необходимые для расчета уже известны.

Выбираем тип транзистора с учетом заданного частотного диапазона работы каскада, а также параметров по току, напряжению и мощности. Максимально допустимый ток коллектора транзистора должен быть больше наибольшего мгновенного значения тока коллектора в режиме работы класса А:

, (5.1)

где амплитуда тока в нагрузке .

Ориентировочно можно выбрать низкочастотный транзистор, имеющий параметры:

,

.

По справочнику [3] выбираем транзистор КТ503А (рис. 4), имеющий следующие параметры:

1.  Статический коэффициент передачи тока в схеме с общим эмиттером 40 – 120.

2.  Граничная частота коэффициента передачи тока в схеме с общим эмиттером не менее 5 МГц;

3.  Постоянное напряжение коллектор – эмиттер 40 В;

4.  Постоянный ток коллектора 0,5 А;

5.  Постоянная рассеиваемая мощность коллектора без теплоотвода при температуре Т=233298 К – 0,35 Вт.


Выберем исходный режим транзистора каскада, для которого

, (5.2)

, (5.3)

. (5.4)

где – напряжение коллектор – эмиттер, соответствующее режиму покоя.

,

, .

Сопротивление резисторов R7, R8 рассчитываем по падению напряжений на них:

; ; (5.5)

; .


Примем R7=150 Ом и R8=56 Ом. По [5] выбираем металлодиэлектрические резисторы С2-33 с номинальной мощностью 1 Вт и 0,5 Вт соответственно. Для проверки резисторов по допустимой мощности рассеяния предположим, что все напряжение, создаваемое источником питания, падает на этих резисторах. Рассеиваемую мощность определим по формуле

; (5.6)

(Вт).

Сопротивление резистора R6 делителя находим из выражения:

, (5.7)

где для кремниевых транзисторов, – ток делителя. .

Сопротивление резистора R5 делителя находим следующим образом

; (5.8)

.


Выбираем по [5] резисторы С2-33 R5=750 Ом, номинальная мощность 0,25 Вт и R6=270 Ом, номинальная мощность 0,125 Вт. Выполним проверку для резистора R5 по формулам, подобным (5.6):

;

.

Для определения коэффициента усиления каскада по току определим эквивалентное сопротивление цепи коллектора по переменному току

, (5.9)

.

Определяем коэффициент усиления по току

, (5.10)

.

Тогда амплитуда входного тока

, (5.11)

.


Входное сопротивление каскада ОЭ определяется с учетом сопротивлений делителя, параметров транзистора и сопротивления цепи эмиттера:

, (5.12)

где – усредненное значение крутизны сквозной характеристики;

– тепловой потенциал.

Тогда входное сопротивление

.

Коэффициент усиления по напряжению

, (5.12)

где  в данном случае – выходное сопротивление входного каскада, определенное ниже (см. стр. 15).

.

Амплитуда входного напряжения


, (5.13)

.

Емкость конденсатора С2 определяем по формуле (3.14)

.

Емкость конденсатора С5, шунтирующего резистор термостабилизации R8 по переменному сигналу, выбираем с учетом того, что его сопротивление должно быть значительно меньше сопротивления R8. Таким образом, по справочнику [6] выбираем алюминиевые оксидно-электролитические конденсаторы К50-29 с емкостями С2=100мкФ и С5=470мкФ и номинальным напряжением 25В.

Для уменьшения коэффициента усиления по току охватим каскада отрицательной обратной связью по току (рис. 5).

Каскад, построенный по схеме с общим, эмиттером поворачивает фазу усиливаемого сигнала на . С понижением частоты входного сигнала появляется дополнительный фазовый сдвиг, обусловленный наличием конденсаторов С4, С5. Но вносимые ими фазовые сдвиги настолько малы ввиду больших емкостей (точно они определены в п.8:  и  соответственно), что ими можно пренебречь и считать, что подаваемое на вход напряжение обратной связи находится в противофазе к входному.

Определим глубину обратной связи из выражения

.

Ток в цепи обратной связи прямопропорционален падению напряжения на резисторе Rос, которое равно падению напряжения на параллельно включенных сопротивлении ОС и входном сопротивлении каскада:

Тогда глубина обратной связи

, (5.14)

Выберем резистор ОС R11=Rос=3000 Ом С3-33 (лакопленочный композиционный) номинальной мощностью 0,025 Вт

().


Тогда

.

Теперь можем найти коэффициент усиления по току каскада с обратной связью

, (5.15)

.

Тогда максимум входного тока

.

Введение обратной связи изменяет параметры каскада, в частности входное сопротивление:

 (5.16)

но ввиду большого сопротивления резистора обратной связи, она практически не влияет на входное сопротивление:

,


а, следовательно, и на коэффициент усиления по напряжению

.

Выходное сопротивление:

; (5.17)

.

Коэффициент усиления по мощности .

6. РАСЧЕТ ВХОДНОГО КАСКАДА

Входной каскад будем строить по схеме с общим эмиттером. Расчет производим по схеме, описанной в предыдущем пункте.

Выберем транзистор согласно формулам

По справочнику [3] выбираем транзистор П701А (рис. 6), имеющий следующие параметры:

1.  Статический коэффициент передачи тока в схеме с общим эмиттером 15 – 60.

2.  Постоянное напряжение коллектор – эмиттер 60 В;

3.  Постоянный ток коллектора 0,5 А;

4.  Постоянная рассеиваемая мощность коллектора без теплоотвода при температуре Т338 К – 1 Вт.

5.  Температура окружающей среды от 213 до 398 К.

Определяем режим покоя транзистора по формулам (5.2) и (5.3):

 .

Сопротивления резисторов R3, R4 определяем по формулам, аналогичным (5.5):

Выбираем по [5] резисторы С2-33 с номиналами R3=150 Ом и R4=51 Ом и номинальной мощностью 1 Вт и 0,5 Вт соответственно.


Проведем проверку по допустимой мощности рассеяния :

;

.

Определяем ток делителя

.

Сопротивление резистора делителя R2 по (5.7):

.

Выбираем резистор С2-33 110 Ом 0,25 Вт.

По формуле (5.8) находим R1:

.

Выбираем резистор С2-33 330 Ом  0,5 Вт.

Проверим резистор R1 и R2 по допустимой мощности рассеяния по формуле, подобной (5.6):

,

.


Определим эквивалентное сопротивление цепи коллектора по переменному току по формуле, подобной (5.9):

.

Подставляя данные в формулу (5.10), получим коэффициент усиления по току

.

Амплитуда входного тока

.

Находим усредненное значение крутизны сквозной характеристики

.

Тогда по формуле, подобной (5.12), найдем входное сопротивление каскада и всего усилителя

.

Коэффициент усиления по напряжению определим по формуле (5.12)


Амплитуду входного напряжения – по формуле (5.13)

.

Рассчитаем емкость входного разделительного конденсатора С1 по формуле (3.14):

По [6] выбираем конденсатор К50-31 220 мкФ 25 В.

Конденсатор С3 выбираем большой емкости исходя из того, что он должен шунтировать резистор термостабилизации по переменной составляющей: К50-24 470мкФ25 В.

7. РАСЧЕТ ОБЩИХ ПАРАМЕТРОВ УСИЛИТЕЛЯ

Определим основные параметры нашего усилителя в соответствии с формулами (2.1):

коэффициент усиления по напряжению

;

коэффициент усиления по току


;

коэффициент усиления по мощности

.

Определим отклонение полученных параметров усилителя от заданных

;

.

Найдем коэффициент частотных искажений по формулам (2.5) и (2.6). Для этого найдем по (2.7) коэффициенты частотных искажений, обусловленные влиянием отдельных конденсаторов:

;

;

;

;

;

;


Тогда общий коэффициент частотных искажений

.

Полученный коэффициент удовлетворяет условию .

Фазовые сдвиги, создаваемый действием каждого конденсатора определим по формуле (2.9):

;

;

;

;

;

;

Тогда фазовый сдвиг выходного напряжения усилителя относительно входного

.


8. ЗАКЛЮЧЕНИЕ

Роль электроники в современной науке и технике трудно переоценить. Она справедливо считается катализатором научно технического прогресса. Без электроники немыслимы ни успехи в освоении космоса и океанских глубин, ни развитие атомной энергетики и вычислительной технике, ни автоматизация производства, ни радиовещание и телевидение, ни изучение живых организмов. Электронные устройства широко применяются также в сельском хозяйстве для автоматизации и связи. Микроэлектроника как очередной исторически обусловленный этап развития электроники и одно из ее основных направлений обеспечивает принципиально новые пути решения назревших задач во всех перечисленных областях.


9. СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1.  Рабочий А.А., Методические указания к курсовой работе "Расчет многокаскадного усилителя низкой частоты" – Орел, 1998 –28 с.

2.  Гусев В.Г., Гусев Ю.М. "Электроника" – М.: Высшая школа, 1991 – 621с.

3.  Полупроводниковые приборы: Транзисторы. Справочник /Под общ. ред. Н.Н. Горюнова – М.: Энергоатомиздат, 1985 –904 с.

4.  Полупроводниковые приборы: Диоды, тиристоры, оптоэлектронные приборы. Справочник /Под общ. ред. Н.Н. Горюнова – М.: Энергоатомиздат, 1985 –744 с.

5.  Резисторы: Справочник: /Под ред. Четверткова И.И. – М.: Радио и связь, 1991 –527 с.

6.  Справочник по электролитическим конденсаторам /Под ред. Четверткова И.И. – М.: Радио и связь, 1983 –575 с.


Информация о работе «Расчет многочастотного усилителя низкой частоты»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 19287
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
183923
13
0

... зондирования, коловорот и др.) КТП-2Г КТП-2БП 1 1 КТП-2П 1 УПТ 1 УПИ 1 1 Комплект устройства для фиксации местоположения соединительных муфт кабельной линии связи УФСМ По согласованию с заказчиком   Примечание. Средства измерения 1-5, 10-12, 14-17, 19 и 20 необходимы только в случае исп-я ОК с металл. элементами. 9.1.    Электрические проверки основных ...

Скачать
326231
12
0

... рисунков в формате А0-А1 со скоростью 10-30 мм/с. Фотонаборный аппарат Фотонаборный аппарат можно увидеть только в солидной полиграфической фирме. Он отличается своим высоким разрешением. Для обработки информации фотонаборный аппарат оборудуется процессором растрового изображения RIP, который функционирует как интерпретатор PostScript в растровое изображение. В отличие от лазерного принтера в ...

Скачать
58919
6
6

сте с другими объектами железнодорожной связи, в состав которых может входить оборудование ДАТС, телеграф, линейно-аппаратный зал. При автоматизации сетей телефонной связи железнодорожного транспорта применяется единая нумерация (ЕН) абонентских и соединительных линий. На железнодорожных станциях абонентам присваиваются четырехзначные номера, причем первый знак номера определяет принадлежность ...

Скачать
168346
1
36

... , расположенной напротив одного из ушей, к точке, расположенной перед человеком. Дилэй применяется, прежде всего, в том случае, когда запись голоса или акустического музыкального инструмента, выполненную с помощью единственного микрофона, встраивают в стереофоническую композицию. Этот эффект служит основой технологии создания стереозаписей. Подробные рекомендации по применению задержки в этих ...

0 комментариев


Наверх