2. Разработка кодирующего устройства для формирования сверточного кода

 

2.1      Разработка структурной схемы кодирующего устройства для формирования сверточного кода

Основой для построения структурной схемы кодирующего устройства для формирования сверточного кода является:

1)         заданное число разрядов регистра сдвига, k=5;

2)        

система образующих полиномов:

3)         скорость формирования сверочного кода,

,

где - число символов сообщения, которые поступают на вход кодирующего устройства для формирования определенного отрезка кодовой комбинации .

Число разрядов регистра либо задано, либо его определяют по старшей степени в системе образующих полиномов, степень X (в данном случае 4+1=5=k) будет образовать число разрядов. Сумматоров по mod2 ставится столько, сколько образующих полиномов в нашей системе. Связи сумматоров с триггерами регистра сдвига определяются соответствующими коэффициентами многочленов.


Рисунок 2 Структурная схема кодирующего устройства

Коммутатор "опрашивает" выходы сумматоров по mod2 по приходу каждого информационного символа и выдает последовательно символы в канал передачи данных, то есть по приходу одного символа сообщения в канал передачи данных поступает два символа кодовой последовательности.

2.2      Разработка функциональной электрической схемы кодирующего устройства для формирования сверточного кода

 

На основе структурной схемы кодера построим функциональную электрическую схему кодирующего устройства (рис.3). При аппаратной реализации используем конструкции на интегральных цифровых микросхемах. Среди серий ИМС выбираем К555 (ТТЛШ – транзисторно-тразисторная логика с использованием диодов Шотки).

Микросхема К555ИР8 - 8-разрядный регистр с последовательной загрузкой и параллельной выгрузкой. Входы: 2 - информационный вход, 8 - тактовый вход, 9 - сброс. Выходы: 3, 4, 5, 6, 10, 11, 12, 13.

Микросхема К555ИР9 - 8-разрядный сдвиговый регистр с параллельной загрузкой и имеет два режима работы: параллельная загрузка и сдвиг. Входы: WR – вход выбора режима; SYN – тактовый вход; входы параллельной загрузки – 3, 4, 5, 6, 11, 12, 13, 14. Выход: 9 – Q7.

Микросхема К555ЛП5 – четыре двухвходовых логических элемента ИСКЛЮЧАЮЩЕЕ ИЛИ (сумматор по mod2).

Микросхема К555ТВ15 – два JK-триггера. Используется в качестве счетного Т-триггера, выполняющего функцию деления частоты на 2. Входы: 4, 12 – входы синхронизации; 1, 15 – входы установки нуля; 5, 11 – входы установки единицы; Выходы: 6, 10 – прямые выходы.

Микросхема К555ЛИ1 – 4 элемента 2И.

Примечание: на микросхемах К555ЛИ1, К555ЛП5 и К555ИР8 7-й выход - общий (земля), 14-й выход – напряжение питания; на микросхемах К555ТВ15, К555ИР9 8-й выход – общий, 16-й выход – напряжение питания;


Принцип работы кодера

 Перед началом работы при подаче единичного потенциала на вход 9 регистра сдвига DD.1 содержимое ячеек памяти регистра обнуляется.

 При подаче тактового импульса генератора тактовых импульсов на синхровход 12 JK-триггера DD.4 (в данном случае работает как счетный триггер) его прямой выход 10 установиться в единичное состояние и с него высокий потенциал поступает на синхровход 8 регистра сдвига DD.1. Под действием тактовых импульсов на информационный вход 2 регистра сдвига DD.1 поступают информационные символы сообщения. На первом такте в регистре сдвига будет находиться 1-й разряд информационного сообщения. Как только пришло  ( =1 ) символов сообщения с выходов 8 и 3 сумматоров по mod2 DD.2.1 и DD.2.2 на входы 1 и 4 ключа DD.4 поступает  ( =2) сформированных символов.

 Далее при подаче тактового импульса на синхровход 4 JK-триггера DD.4 его выход 6 установится в единичное состояние, тем самым на входы 2 и 5 ключа DD.5 подается единица, и информация с выходов 3 и 6 ключа DD.5 параллельно поступает на входы 1 и 0 регистра DD.5. Затем, по приходу очередного тактового импульса на синхровходы 4 и 12 JK-триггера DD.4 его прямые выходы 6 и 10 установятся в нулевое состояние, следовательно, по приходу низкого потенциала на синхровход 8 регистра сдвига DD.1, считывание информации с его выходов производиться не будет, а ключи DD.4 закроются. Так как частота прихода импульсов с генератора на регистр DD.5 в два раза выше, чем частота прихода импульсов на регистр DD.1, то сформированные символы кодовой последовательности, записанные в ячейки памяти регистра DD.5, будут последовательно выталкиваться в канал передачи данных.

 Исходя из рассмотренного принципа работы кодирующего устройства, можно утверждать, что по приходу всего дискретного сообщения  на выходе будет сформировано  символов кодовой последовательности.

В памяти регистра сдвига останутся последние символы сообщения. Это существенный недостаток, который влияет на конечный результат кодирования, поэтому на практике после окончания сообщения, имеющего длину , на вход кодирующего устройства дополнительно подается  нулей (4нуля) для того, чтобы выдвинуть из регистра сдвига оставшуюся информацию.

Поэтому длина кодовой последовательности будет определяться:

;

Это говорит о том, что скорость кода в канале связи

,

что не очень хорошо, так как лишняя избыточность приводит к дополнительным затратам энергии на передачу. Однако если не производить указанное выталкивание символов из регистра сдвига, то не удастся достичь нужного кодового расстояния.


3.            Оценка вероятности правильного приема сообщения, закодированного сверточным кодом

 

Для оценки вероятности доведения сообщения, закодированного сверточным кодом, используется формула:

Где

- итоговая длина кодовой комбинации,

- число ошибок, гарантированно исправляемых кодом (  ),

- вероятность ошибки в приеме бита информации при кодированной системе,

 для сигнала F9:

;

 ;

;

;

Вероятность доведения сообщения при не кодированной системе:

;

 ;

Вероятность ошибки (трансформации) принятого сообщения:

;

Таким образом, вероятность доведения сообщения кодированной системы меньше чем вероятность доведения сообщения не кодированной системы:

 .

Следовательно, код имеет отрицательную эффективность.


Заключение

 

В результате выполнения курсовой работы была разработана функциональная электрическая схема кодера для формирования несистематического сверточного кода и основаны принципы построения схемы кодера. Определена итоговая длина кодовой последовательности, которая равна  символам и выявлено, что сверточный код целесообразно использовать при передаче длинных сообщений. При больших длинах сообщения разница между скоростью кода в канале связи и скоростью формирования сверточного кода небольшая, а при коротких эта разница может быть существенна.

 При оценке достоверности принимаемой информации было определено, что используемый сверточный код с данными параметрами обладает отрицательной эффективностью , следовательно, можно: изменить параметры сверточного кода, например, взять сверточный код (4,3) со скоростью формирования , длиной регистра k=6, минимальным кодовым расстоянием , а также увеличить энергию сигнала или время доведения сообщения в раз. В этом случае и могут быть получены требуемые значения .


Список использованной литературы

 

1. Зеленевский В. В. Каналы связи в автоматизированных системах управления. СВИ:2005

2. Кларк-мл., Кейн Дж. Кодирование с исправлением ошибок в системах цифровой связи. 1987

3. Мак-Вильямс Ф.Дж.Теория кодов, исправляющих ошибки. 1979

4. Якубовский С.В. Цифровые и аналоговые интегральные микросхемы. Справочник. 1989


Информация о работе «Разработка кодирующего устройства для формирования сверточного кода»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 12103
Количество таблиц: 1
Количество изображений: 2

Похожие работы

Скачать
119269
7
35

... за которым следует устройство дискретизации (рисунок 4.2), подастся известный сигнал s(t) плюс шум AWGN n(t). 4.4 Межсимвольная интерференция На рисунке 4.3 а) представлены фильтрующие элементы типичной системы цифровой связи. В системе - передатчике, приемнике и канале - используется множество разнообразных фильтров (и реактивных элементов, таких как емкость и индуктивность). В передатчике ...

Скачать
128945
1
27

... быть получен неудовлетворительный результат, а в другом - чрезмерное усложнение конструкции может привести к неоправданному увеличению стоимости оборудования, а приемная система будет выглядеть неэстетично. Результатом расчета линии связи является вычисленное значение отношения S/N, величина которого сравнивается с соответствующими значениями по пятибалльной шкале градаций качества принимаемого ...

Скачать
124950
17
30

... защиту сети. ·  Организация подключения к сети Internet. Доступ к сети Internet организовать через широкополосный /DSL модем. Рисунок 2.4 – Схема беспроводной сети   2.5 Программирование При проектировании беспроводной сети Wi-Fi была разработана программа расчёта эффективной изотропной излучаемой мощности для удобства проведения расчетов. Приложение разработано на языке Delphi 7 Вид ...

Скачать
99099
4
30

... сет, благодаря использованию технологии OFDM создает зоны покрытия в условиях отсутствия прямой видимости от клиентского оборудования до базовой станции, при этом расстояния исчисляются километрами; 6.         Технология WiMAX изначально содержит в себе протокол IP, что позволяет легко и прозрачно интегрировать её в локальные сети; 7.         Технология WiMAX подходит для фиксированных, ...

0 комментариев


Наверх