1.4 Способи попередження катастрофи

Сучасні системи спостереження з космосу дозволяють завчасно виявити велетенську хвилю у відкритому океані. Ці дослідження підтримує РФФІ, повідомляє агентство «ІнформНаука». Спеціалісти Інституту океанології ім. П.Ширшова РАН під керівництвом члена-кореспондента РАН С.Лаппо розв’язують проблему відвернення наслідків морських катастроф, у тому числі цунамі. Теоретично це можливо. Сучасні системи космічного спостереження за океаном дозволяють завчасно виявити велетенську хвилю. Але, щоб вчасно скористатися цією інформацією, необхідно створити нову службу оповіщення.

Запобігти цунамі не можна. Проти страшенних обсягів морської води, які накочуються на берег, захисні споруди безсилі. Висота повені часом перевищує 10 метрів, а на мілководному шельфі та в гирлах рік хвиля набуває форми водної стіни, що з величезною швидкістю рухається до берега. Найефективніше рятуватися від цунамі втечею: судам іти у відкрите море, а мешканцям суші подалі від берега. Головне - завчасно дізнатися про наближення хвилі. 26 грудня 2004 року від моменту землетрусу, котрий породив цунамі, до приходу хвилі минуло від 20 хвилин до кількох годин. Час цілком достатній для евакуації. Трагедію спричинила відсутність у цьому регіоні служби попередження.

Традиційні методи попередження про хвилі цунамі грунтуються передусім на сейсмічній інформації, отримуваній відразу після землетрусу. Потім фахівці вираховують, коли й куди добіжить хвиля. Але ці розрахунки неточні, бо береговим службам невідомі параметри цунамі в епіцентрі землетрусу. Приміром, під час Шикотанського цунамі 4 жовтня 1994 року Тихоокеанська служба попередження про цунамі оголосила тривогу на Гавайських островах. На евакуацію тисяч людей витратили близько 30 млн. доларів США, причому двоє людей під час евакуації загинули. Хвиля прийшла, але її висота не перевищувала півметра.

Російські океанологи одержують якісні записи цунамі у відкритому океані із допомогою датчиків придонного гідростатичного тиску. Але такі системи дуже дорогі й не можуть забезпечити спостереження за всіма ймовірними зонами виникнення й поширення хвиль цунамі. Спостереження за океанською поверхнею із супутника помітно розширює можливості океанографії. Кардинально розв’язати проблему дозволяє супутникова альтиметрія, яка реєструє великомасштабні зсуви рівня океану заввишки лише в кілька сантиметрів. Такі виміри вже нині можна робити зі штучних супутників Землі GEOSAT, TOPEX/POSEIDON, ERS-1.2, JASON-1, ENVISAT, а в перспективі й із російського геодезичного супутника «Геоїк-2». Практично безперервне дослідження висоти поверхні Світового океану триває від 1985 року. Створено оригінальні бази даних супутникової альтиметрії, вони регулярно поповнюються й доступні для наукового використання у двох центрах: у США та в Європі. У Геофізичному центрі РАН за підтримки РФФІ також створено базу даних і Систему автоматизованого опрацювання даних супутникової альтиметрії. Цунамі в Індійському океані «засікли» альтиметри кількох супутників, найякісніший запис вийшов на JASON-1. Аналіз цього запису дозволив досить точно вирахувати положення фронту хвилі.

Отже, своєчасно виявити цунамі у відкритому океані можливо. Для цього, на думку океанологів, необхідно розвивати технології безперервного спостереження за морською поверхнею (як із допомогою датчиків рівня відкритого океану, оснащених телеметричним зв’язком із центрами опрацювання, так і з використанням супутникових альтиметричних вимірів). На жаль, сучасна служба цунамі побудована переважно на регіональному принципі.

І, як показує аналіз дій національних служб 26 грудня 2004 року, їхня «зона відповідальності» обмежена лише підконтрольною ділянкою узбережжя. Багатьом країнам, що розвиваються, не по кишені сучасний рівень оперативного прогнозу, а катастрофи часто набувають жахливих масштабів і забирають життя громадян багатьох держав.

Тому російські вчені вважають за доцільне створення глобальної системи спостережень за поверхнею океану, що працювала б під міжнародним контролем.


2. Комплексна характеристика цунамі

 

2.1 Фізико-математична основа хвиль

Магнітуда (від лат. magnitude – величина), умовна величина, що характеризує загальну енергію пружних коливань, викликаних землетрусами або вибухами; пропорціональна логарифму енергії землетрусів; дозволяє порівнювати джерела коливань за їх енергією.

 (2.1)

де ηmax - максимальна висота в метрах, що виміряна на узбережжі на відстані 10-300км від місця зародження цунамі. Географічний розподіл епіцентрів цунамігених землетрусів (класифікованих за магнітудою цунамі m) показує, що більшість із них припадає на Тихий океан біля Японії (але не в Японському морі).

Соловйов відмічав некоректність використання терміну «магнітуда цунамі». Він писав: «Якщо для опису цунамі застосовується сейсмологічна термінологія, то градації шкали Імамура-Ііда є мірою інтенсивності, а не магнітуди. Це є наслідком того, що величина магнітуди повинна давати динамічну характеристику процесу в джерелі, а інтенсивність повинна характеризувати його в деякому найближчому до джерела пункті спостереження». Іншим важливим моментом, відміченим Соловйовим, є різниця між середнім η і максимальним ηmax затопленням при цунамі. Ця різниця необхідна, так як, хоча енергія цунамі визначається за середньою висотою підйому, в старих описах, перш за все, вказується максимальна висота цунамі. Різниця між середньою і максимальною висотою може бути в основному обумовлена топографією.

Соловйов визначив інтенсивність цунамі і:


(2.2)

Порівняно з рівнянням (2.1) рівняння (2.2) має три відмінності.

По-перше, замість величини m вводиться параметр і; по-друге, максимальна висота ηmax замінюється на середню η, по-третє, вводиться множник , що враховує середню різницю між максимальною і середньою висотою цунамі різної інтенсивності.

Рис. 2.1 - Залежність ηmax від η


Список використаної літератури

 

1.  Денисова П. Тайны катастроф / П. Денисова. – М.: Рипол - Классик, 2000. – 336 с.

2.  Вагнер Б.Б. Сто великих чудес природы /Б Б. Вагнер. - М.: Вече, 2002.-496 с.

3.  Тарасов Л.В. Природа Земли: прошлое, настоящее, будущее: книга для любознательных школьников/ Л.В. Тарасов. – Сумы: Университетская книга, 2006. - 481 с.

4.  Энциклопедический словарь юного географа-краеведа. Сост. Г.В. Карпов.- М.: Педагогика, 1981.-384 с.

5.  Бойназаров А.М., Кандиба Ю.І. Географія: Довідник старшокласника та абітурієнта.-Харків: «ТОРСІНГ ПЛЮС», 2006.-352 с.

6.  Кукол З. Природные катастрофы.-М.: Знание, 1985.-240 с.


Информация о работе «Цунамі»
Раздел: География
Количество знаков с пробелами: 23124
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
27258
6
5

... 4 горизонта цунамигенных отложений на п-ве Камчатский Мыс [5]. Начиная с 1995 г. такие работы проводились на Камчатке каждый год (рис.1). Находки многочисленных (более 40 для отдельного района) отложений цунами за последние 7000 лет впервые были сделаны в 1995 г. на побережье Кроноцкого залива. Полученные данные позволили реконструировать не только параметры отдельных цунами, но и впервые ...

Скачать
19659
2
8

... больше амплитуды колебании, вызванных Ашхабадским землетрясением 1948 года, эпицентр которого был расположен в шесть раз ближе к Москве. Катастрофические сотрясения 22 мая породили волны цунами, которые распространялись по Тихому океану и за его пределы со скоростью 650-700 км/час. На чилийском побережье были разрушены рыбацкие поселки и портовые сооружения; сотни людей были унесены волнами. На ...

Скачать
8400
0
0

... периода, и подается отбой как собственным тревогам, так и тревогам, выпущенным сейсмостанцией. В режиме повышенной готовности или в процессе проведения действия по тревоге (ЧС), Центр Цунами осуществляет взаимодействие с аналогичными зарубежными центрами, включенными в регламент отработки тревожных ситуация в Тихоокеанском регионе. На местном уровне Центр Цунами инициирует созыв областной ...

Скачать
15679
0
0

... подрубает человеку ноги. Поэтому, получив предупреждение даже о незначительном цунами, надо уходить от берега. После катастрофы декабря 2004 года случилась следующая - в марте 2005-го. Вслед за новым землетрясением еще одно цунами обрушилось на северный берег Суматры и несколько прилегающих островков. Волны на сей раз не разошлись далеко, а их высота составляла «всего-навсего» около трех метров. ...

0 комментариев


Наверх