Радиационный баланс земной поверхности

Физическая география
Атмосфера. Ее состав, строение и граница Взаимодействие атмосферы с другими геосферами Солнце и солнечная радиация. Лучистая энергия Солнца, солнечный ветер Потоки солнечной радиации в атмосфере: рассеянная, отраженная, суммарная Радиационный баланс земной поверхности Тепловой баланс и тепловой режим земной поверхности и атмосферы. Различия в тепловом режиме почвы и водоемов. Суточный годовой ход температуры Изменение температуры с высотой. Инверсия температур. Заморозки Оптические явления в атмосфере Водяной пар в атмосфере. Водяной пар в воздухе Конденсация в атмосфере Дымка, туман, мгла Облака См. 17 Осадки, выпадающие из облаков Образование осадков Характеристики режима осадков Тип тропических муссонов Карты барической топографии Горизонтальный барический градиент Ускорение воздуха под действием барического градиента Местные ветры Маломасштабные вихри Процессы и факторы климатообразования Евразия Южная Америка Антарктида и Австралия
283636
знаков
0
таблиц
0
изображений

12. Радиационный баланс земной поверхности

Разность между поглощенной радиацией и эффективным излучением называют радиационным балансом земной поверхности. Другое ее название — остаточная радиация.

Радиационный баланс переходит от ночных, отрицательных значений к дневным, положительным после восхода солнца при высоте его 10—15°. От положительных значений к отрицательным он переходит перед заходом солнца при той же его высоте над горизонтом. При наличии снежного покрова радиационный баланс переходит к положительным значениям только при высоте солнца около 20—25°, так как при большом альбедо снега поглощение им суммарной радиации мало. Днем радиационный баланс растет с увеличением высоты солнца и убывает с ее уменьшением. В ночные часы, когда суммарная радиация отсутствует, отрицательный радиационный баланс равен эффективному излучению и потому меняется в течение ночи мало, если только условия облачности остаются одинаковыми.Средние полуденные значения радиационного баланса в Ленинграде летом при облачности менее 7/10 покрытия неба — около 0,7—0,8 кал/см2 мин. При облачности от 7/10 до полной наблюдаются и очень высокие (до 1,0 кал/см2 мин), и очень низкие (до 0,1 кал/см2 мин) значения.

 

13. Излучение в мировое пространство

Излучение нижних слоев атмосферы поглощается в вышележащих ее слоях. Но, по мере удаления от земной поверхности, содержание водяного пара, основного поглотителя радиации, уменьшается, и нужен все более толстый слой воздуха, чтобы поглотить излучение, поступающее от нижележащих слоев. Начиная с некоторой высоты водяного пара вообще недостаточно для того, чтобы поглотить все излучение, идущее снизу, и из этих верхних слоев часть атмосферного излучения будет уходить в мировое пространство. Подсчеты показывают, что наиболее сильно излучающие в пространство слои атмосферы лежат на высотах 6—10 км.Длинноволновое излучение земной поверхности и атмосферы, уходящее в космос, называется уходящей радиацией. Оно составляет около 65 единиц, если за 100 единиц принять приток солнечной радиации в атмосферу. Вместе с отраженной и рассеянной коротковолновой солнечной радиацией, выходящей за пределы атмосферы в количестве около 35 единиц (см. в параграфе 17 о планетарном альбедо Земли), эта уходящая радиация компенсирует приток солнечной радиации к Земле. Таким образом, Земля вместе с атмосферой теряет столько же радиации, сколько и получает, т. е. находится в состоянии лучистого (радиационного) равновесия.

14. Географическое распределение радиационного баланса и суммарной радиации

Итак, рассмотрим распределение годовых и месячных количеств (сумм) суммарной радиации по Земному шару. Мы видим, что оно не вполне зонально: изолинии (т. е. линии равных величин) радиации на картах не совпадают с широтными кругами. Отклонения эти объясняются тем, что на распределение радиации по Земному шару оказывают влияние прозрачность атмосферы и облачность.

Годовые количества суммарной радиации составляют в тропических и субтропических широтах свыше 140 ккал/см2. Они особенно велики в малооблачных субтропических пустынях, а в северной Африке достигают 200—220 ккал/см2. Зато над приэкваториальными лесными областями с их большой облачностью (над бассейнами Амазонки и Конго, над Индонезией) они снижены до 100—120 ккал/см2. К более высоким широтам обоих полушарий годовые количества суммарной радиации убывают, достигая под 60° широты 60—80 ккал/см2. Но затем они снова растут — мало в северном полушарии, но весьма значительно над малооблачной и снежной Антарктидой, где в глубине материка они достигают 120—130 ккал/см2, т. е. величин, близких к тропическим и превышающих экваториальные.

Над океанами суммы радиации ниже, чем над сушей.

В декабре наибольшие суммы радиации, до 20— 22 ккал/см2 и даже выше, в пустынях южного полушария. Но в облачных районах у экватора они снижены до 8— 12 ккал/см2. В зимнем северном полушарии радиация быстро убывает на север; к северу от 50-й параллели она менее 2 ккал/см2 и несколько севернее полярного круга равна нулю. В летнем южном полушарии она убывает к югу до 10 ккал/см2 и ниже в широтах 50—60°. Но затем она растет — до 20 ккал/см2 у берегов Антарктиды и свыше 30 ккал/см2 внутри Антарктиды, где она, таким образом, больше, чем летом в тропиках.

В июненаивысшие суммы радиации, свыше 22 ккал/см2, над северо-восточной Африкой, Аравией, Иранским нагорьем. До 20 ккал/см2 и выше они в Средней Азии; значительно меньше, до 14 ккал/см2, в тропических частях материков южного полушария. В облачных приэкваториальных областях они, как и в декабре, снижены до 8—12 ккал/см2. В летнем северном полушарии суммы радиации убывают от субтропиков к северу медленно, а севернее 50° с. ш. возрастают, достигая 20 ккал/см2 и более в Арктическом бассейне. В зимнем южном полушарии они быстро убывают к югу, до нуля за южным полярным кругом.

Не вся суммарная радиация поглощается земной поверхностью. В какой-то части она отражается. Путем отражения теряется в общем от 5 до 20% суммарной радиации. В пустынях и особенно в областях со снежным и ледяным покровом потеря путем отражения больше.

Географическое распределение радиационного баланса

Как известно, радиационный баланс является разностью между суммарной радиацией и эффективным излучением. Поэтому вначале мы кратко рассмотрим географическое распределение эффективного излучения.

Эффективное излучение земной поверхности распределяется по Земному шару более равномерно, чем суммарная радиация. Дело в том, что с ростом температуры земной поверхности, т. е. с переходом к более низким широтам, растет собственное излучение земной поверхности; но одновременно растет и встречное излучение вследствие большего влагосодержания воздуха и более высокой его температуры. Поэтому изменения эффективного излучения с широтой не слишком велики.

Вблизи экватора, при большой влажности и облачности, эффективное излучение около 30 ккал/см2 в год на суше, как и на море. В направлении к высоким широтам оно растет, достигая под 60-й параллелью примерно 40—50 ккал/см2 в год над океанами. На суше оно больше, особенно в сухих, малооблачных и жарких тропических пустынях, где достигает 80 ккал/см2 в год.

Радиационный баланс земной поверхности за год положителен для всех мест Земли, кроме ледяных плато Гренландии и Антарктиды. Это значит, что годовой приток поглощенной радиации больше, чем эффективное излучение за то же время. Но это вовсе не означает, что земная поверхность год от года становится все теплее. Дело в том, что избыток поглощенной радиации над излучением уравновешивается передачей тепла от земной поверхности в воздух путем теплопроводности и при фазовых преобразованиях воды (при испарении с земной поверхности и последующей конденсации в атмосфере). Таким образом, хотя для земной поверхности не существует равновесия в получении и отдаче радиации, но существует тепловое равновесие: приток тепла к земной поверхности как радиационными, так и нерадиационными путями равен его отдаче теми же способами.

Радиации больше, чем эффективное излучение за то же время. Но это вовсе не означает, что земная поверхность год от года становится все теплее. Дело в том, что избыток поглощенной радиации над излучением уравновешивается передачей тепла от земной поверхности в воздух путем теплопроводности и при фазовых преобразованиях воды (при испарении с земной поверхности и последующей конденсации в атмосфере). Таким образом, хотя для земной поверхности не существует равновесия в получении и отдаче радиации, но существует тепловое равновесие: приток тепла к земной поверхности как радиационными, так и нерадиационными путями равен его отдаче теми же способами. Около 60-й параллели в обоих полушариях годовой радиационный баланс равен 20—30 ккал/см2 (карта IV). Отсюда к более высоким широтам он уменьшается и на материке Антарктиды отрицателен: от —5 до —10 ккал/см2. К низким широтам он возрастает: между 40° с. ш. и 40° ю. ш. годовые величины баланса свыше 60 ккал/см2, а между 20° с. ш. и 20° ю. ш. — свыше 100 ккал/см2. На океанах радиационный баланс больше, чем на суше в тех же широтах, так как океаны поглощают радиацию больше. Существенные отклонения от зонального распределения имеются еще в пустынях, где баланс понижен (в Сахаре, например, до 60 ккал/см2) вследствие большого эффективного излучения в сухом и малооблачном воздухе. Баланс понижен также, но в меньшей мере, в районах с муссонным климатом, где в теплое время года облачность увеличена и, стало быть, поглощенная радиация уменьшена по сравнению с другими районами под той же широтой.

В декабре (карта V)радиационный баланс отрицателен в значительной части зимнего северного полушария: нулевая изолиния проходит немного южнее 40° с. ш. К северу от этой широты баланс становится отрицательным и в Арктике достигает —4 ккал/см2 и ниже. Южнее 40° с. ш. он возрастает до 10— 14 ккал/см2 на южном тропике, откуда убывает до 4—5 ккал/см2 в прибрежных районах Антарктиды.

В июне (карта VI)радиационный баланс во всем северном полушарии положителен. Под 60—65° с. ш. он в общем больше 8 ккал/см2. С уменьшением широты он возрастает, но медленно. По обе стороны от северного тропика он достигает максимума: 12—14 ккал/см2 и выше, а на севере Аравийского моря 16 ккал/см2 и выше. Баланс остается положительным до 40° ю. ш. Южнее он переходит к отрицательным значениям и у берегов Антарктиды снижается до 1-2 ккал/см2.В Советском Союзе годовой радиационный баланс на суше в северных широтах порядка 10 ккал/см2, а на юге — до 50 ккал/см2.


Информация о работе «Физическая география»
Раздел: География
Количество знаков с пробелами: 283636
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
19617
0
3

... Южной Америки, вскрыл значение анализа взаимосвязей как всеобщей нити всей географической науки. Он выявил биоклиматическую широтную зональность и высотную поясность, предложил употребить изотермы в климатических характеристиках, заложил основы сравнительной физической географии. В главной своей работе - "Космос, опыт физического мироописания" - он обосновал взгляд на земную поверхность (предмет ...

Скачать
102044
4
2

... . Выполнение работы учащимися под руководством учителя. Составление отчета. Обсуждение и теоретическая интерпретация полученных результатов работы [21]. 2. Современные методы и подходы, нацеленные на активизацию познавательной деятельности учащихся в процессе изучения курса «ФГМиО»   Существует много современных технологий, позволяющих избрать наиболее эффективные формы и методы обучения. В ...

Скачать
556297
1
0

... было бы ожидать в связи с обилием карстующихся пород. Более широко они развиты в южной части страны, где отсутствует сплошная мерзлота. Так, на Лено-Ангарском и Лено-Алданском плато имеется масса карстовых воронок, колодцев, слепых долин и т. д. С активным физическим выветриванием в условиях резко континентального климата связано обилие глыбово-каменистых россыпей, каменных потоков - курумов и ...

Скачать
29440
0
15

... , сколько понимание, осмысление изучаемого материала. География, как и другие предметы, формирует систему понятий, знаний, закладывает основы мировоззрения личности. Глава 2. Формы и методы познавательной деятельности учащихся на уроках физической географии С каким желанием, интересом идут шестиклассники на первые уроки географии, с широко раскрытыми глазами внимательно слушают рассказы о ...

0 комментариев


Наверх