1.3 Микрокорпуса

При непосредственной установке кристаллов на монтажные подложки не всегда представляется возможность предварительно убедиться в их правильной работе до их монтажа на подложку. К настоящему времени существует несколько технологий для решения этой проблемы. В зарубежной терминологии эта проблема имеет название – «заведомо исправный кристалл». Один из путей ее решения – использование микрокорпусов, размеры которых лишь ненамного превышают размеры кристалла, но выполняют функции защиты от внешней среды и перераспределяют выводы кристалла на матрицу выводов микрокорпуса. Применение микрокорпусов позволяет тестировать микросхему до установки ее на монтажную подложку. На микросхемах с программируемой логикой создается возможность программировать их пережиганием перемычек в соответствии с задуманной схемой. Типовой пример микрокорпусов – CSP-корпус.

Поскольку для некоторых CSP-корпусов шаг матричных выводов составляет 0,5 мм и менее, требуется использование специальных технологий производства печатных плат, позволяющих обеспечить разводку сигнальных цепей в узких пространствах между элементами монтажного поля.

Существующие технологии производства печатных плат способны обеспечить монтаж выводов бескорпусных микросхем, если он выполняется по технологии термокомпрессионной сварки или с использованием ленточных носителей. И, хотя такое решение переносит трудности защиты открытых кристаллов микросхем на корпусирование электронных модулей, оно все еще остается одним из наиболее эффективных методов монтажа бескорпусных микросхем.

При использовании корпусов с малым шагом матричных выводов ситуация усложняется тем, что сигнальные связи от внутренних выводов матрицы необходимо вывести между контактными площадками матрицы. При этом имеется возможность провести между контактными площадками один, максимум, два проводника. Поэтому, в большинстве случаев, проводники от внутренних выводов матрицы выводятся по внутренним слоям многослойных печатных плат.

Многослойные печатные платы, изготовленные традиционным методами маталлизиции сквозных отверстий, плохо приспособлены к монтажу микросхем с матричными выводами с шагом менее 8,0 мм. И, в то же время, уже созданы корпуса микросхем типа CSP с шагом матричных выводов 0,508 мм и 0,254 мм. Для монтажа таких компонентов к МПП добавляются специальные слои с глухими металлизированными отверстиями, на которых реализуется разводка цепей из-под микрокорпусов или из-под бескорпусных кристаллов микросхем.

Такие тонкие дополнительные специализированные слои, напрессовываются на МПП, после чего в них выполняются глухие металлизированные отверстия. Поэтому этот метод за рубежом получил названием «напрессованная на поверхность схема». И, хотя в России для этого метода пока нет установившегося термина, можно видеть, что в нем соединены метод металлизации сквозных отверстий и метод послойного наращивания. Значит, ему можно присвоить длинное название – «МПП с послойным наращиванием внешних слоев» или «МПП с глухими отверстиями», пока в русской среде специалистов не установится более лаконичное название.

1.4 Количество выводов и степень интеграции микросхем

При монтаже кристаллов на подложку корпуса и корпуса на монтажную подложку или при непосредственном монтаже кристалла на плату неизбежно увеличиваются используемые для этого площади. Это вызвано необходимостью выделения определенного физического пространства для размещения выводов. А число выводов подчиняется общей тенденцией их увеличения с увеличением интеграции микросхем:

где я – количество выводов, q – коэффициент связности микроэлементов в структуре микросхемы, N – степень интеграции микросхемы, R – показатель Рента.

В противоположность степени интеграции, этот эффект называют степенью дезинтеграции, которая оценивается отношением плотности микроэлементов, отнесенной к монтажной площади на плате с их плотностью размещения на кристалле. Например, если кристалл процессора имеет размер 10x10 мм, а монтажное поле его корпуса на плате занимает площадь 4000 мм, такое конструктивное исполнение системы межсоединений характеризуется дезинтеграцией с числом 10. Эта цифрой оценивается матрица из 800 выводов. Периферийное расположение такого количества выводов с шагом 0,4 мм занимает монтажное поле площадью 8000 мм, значит степень дезинтеграции такого конструктивного исполнения – 100.

Нужно заметить, что степень дезинтеграции растет по мере возрастания иерархического уровня конструкции: кристалл – микросхема – печатный узел – модуль – блок – … Например, дезинтеграция в блоке может достигать цифры 100 тыс.

Очевидно, что степени интеграции и дезинтеграции должны соответствовать техническому уровню развития производства. При стремлении выполнить конструкцию на предельных возможностях производства, стоимость изделия станет неоправданно высокой из-за большого объема отходов на брак. Надежность таких конструкций также не будет гарантирована. Если же в производство поступит изделие, спроектированное по низким проектным нормам, т.е. с большой степенью дезинтеграции, его большая материалоемкость, низкая фондоотдача также пагубно скажется на его себестоимости.



Информация о работе «Элементы конструирования печатных плат»
Раздел: Промышленность, производство
Количество знаков с пробелами: 69120
Количество таблиц: 3
Количество изображений: 13

Похожие работы

Скачать
20569
8
4

... приводится в графической части. 3. ТРАССИРОВКА МОНТАЖНЫХ СОЕДИНЕНИЙ. 3.1 Трассировка с помощью алгоритма Прима На основании полученных ранее данных и требований задания проведем трассировку общего провода цепи питания печатной платы блока оперативной памяти методом Прима. Для этого приведём необходимый участок печатной платы в сетке с шагом 5. Вывод 1 разъёма должен быть соединён с выводами 7 ...

Скачать
11294
1
3

... разработки Учебный план специальности 200800. 1.3 Цель и назначение разработки Целью является проектирование конструкций изделий 1-ого уровня; освоение методики конструирования печатных узлов и печатных плат, методов их компоновки. 1.4 Источник разработки Журнал "Приборы и техника эксперимента".-2001.- №2.-с.146-148 схема электрическая принципиальная устройства регистрации. 1.5. ...

Скачать
17400
0
1

... различают три метода выполнения ПП: -    ручной; -    полу автоматизированный; -    автоматизированный; Предпочтительными являются полу автоматизированный, автоматизированный методы. 2.   Процесс изготовления печатной платы В техническом прогрессе ЭВМ играют значительную роль: они значительно облегчают работу человека в различных областях промышленности, инженерных исследованиях, ...

Скачать
95973
3
20

... - Text Style (Текстовый стиль). В этом диалоговом окне установки такие же, как в программе Symbol Editor. 4 РАЗРАБОТАТЬ КОНТАКТНЫЕ ПЛОЩАДКИ Во всех системах автоматизированного проектирования печатных плат информация о графике контактных площадок содержится отдельно от графики корпуса компонента. Это связано с тем, что при изготовлении фотошаблона требуется обеспечить сопряжение программных ...

0 комментариев


Наверх